欢迎阅读高一下册数学教学计划(精选4篇),内容由多美网整理,希望对大家有所帮助。
高一下册数学教学计划 篇1
一、教材依据
本节课是北师大版数学(必修2)第二章《解析几何初步》第一节《1.2直线的方程》第一部分《直线方程的点斜式》内容。
二、教材分析
直线方程的点斜式给出了根据已知一个点和斜率求直线方程的方法和途径。在求直线的方程中,直线方程的点斜式是基本的,直线方程的斜截式
、两点式都是由点斜式推出的。从初中代数中的一次函数引入,自然过渡到本节课想要解决的问题求直线方程问题。在引入,过程中要让学生弄清
直线与方程的一一对应关系,理解研究直线可以从研究方程和方程的特征入手。
在推导直线方程的点斜式时,根据直线这一结论,先猜想确定一条直线的条件,再根据猜想得到的条件求出直线方程。
三、教学目标
知识与技能:
(1)理解直线方程的点斜式、斜截式的形式特点和适用范围;
(2)能正确利用直线的点斜式、斜截式公式求直线方程。
(3)体会直线的斜截式方程与一次函数的关系。
过程与方法:在已知直角坐标系内确定一条直线的几何要素直线上的一点和直线的倾斜角的基础上,通过师生探讨,得出直线的点斜式方程;学生
通过对比理解截距与距离的区别。
情态与价值观:通过让学生体会直线的斜截式方程与一次函数的关系,进一步培养学生数形结合的思想,渗透数学中普遍存在相互联系、相互转化
等观点,使学生能用联系的观点看问题。
四、教学重点
重点:直线的点斜式方程和斜截式方程。
五、教学难点
难点:直线的点斜式方程和斜截式方程的应用。
要点:运用数形结合的思想方法,帮助学生分析描述几何图形。
六、教学准备
1.教学方法的选择:启发、引导、讨论.
创设问题情境,采用启发诱导式的教学模式引导学生探索讨论,学生主动参与提出问题、探索问题和解决问题的过程,突出以学生为主体的探究性
学习活动。
2.通过让学生观察、讨论、辨析、画图,亲身实践,调动多感官去体验数学建模的思想;学生要学会用数形结合的方法建立起代数问题与几何问题
间的密切联系。为使学生积极参与课堂学习,我主要指导了以下的学习方法:
①.让学生自己发现问题,自己通过观察图像归纳总结,自己评析解题对错,从而提高学生的参与意识和数学表达能力。
②.分组讨论。
高一下册数学教学计划 篇2
一、内容及其解析
1。内容:这是一节建立直线的点斜式方程(斜截式方程)的概念课。学生在此之前已学习了在直角坐标系内确定直线一条直线几何要素,已知直线上的一点和直线的倾斜角(斜率)可以确定一条直线,已知两点也可以确定一条直线。本节要求利用确定一条直线的几何要素直线上的一点和直线的倾斜角,建立直线方程,通过方程研究直线。
2。解析:直线方程属于解析几何的基础知识,是研究解析几何的开始。从整体来看,直线方程初步体现了解析几何的实质用代数的知识研究几何问题。从集合与对应的角度构建了平面上的直线与二元一次方程的一一对应关系,是学习解析几何的基础。对后续圆、直线与圆的位置关系等内容的学习,无论是知识上还是方法上都有着积极的意义。从本节来看,学生对直线既是熟悉的,又是陌生的。熟悉是学生知道一次函数的图像是直线,陌生是用解析几何的方法求直线的方程。直线的点斜式方程是推导其它直线方程的基础,在直线方程中占有重要地位。
二、目标及其解析
1。目标
掌握直线的点斜式和斜截式方程的推导过程,并能根据条件熟练求出直线的点斜式方程和斜截式方程。
2。解析
①知道直线上的一点和直线的倾斜角的代数含义是这个点的坐标和这条直线的斜率。知道建立直线方程就是将确定直线的几何要素用代数形式表示出来。
②理解建立直线点斜式方程就是用直线上任意一点与已知点这两个点的坐标表示斜率。
③经历直线的点斜式方程的推导过程,体会直线和直线方程之间的关系,渗透解析几何的基本思想。
④在讨论直线的点斜式方程的应用条件与建立直线的斜截式方程中,体会分类讨论的思想,体会特殊与一般思想。
⑤在建立直线方程的过程中,体会数形结合思想。在直线的斜截式方程与一次函数的比较中,体会两者区别与联系,特别是体会两者数形结合的区别,进一步体会解析几何的基本思想。
三、教学问题诊断分析
1。学生在初中已经学习了一次函数,知道一次函数的图像是一条直线,因此学生对研究直线的方程可能心存疑虑,产生疑虑的原因是学生初次接触到解析几何,不明确解析几何的实质,因此应跟学生讲请解析几何与函数的区别。
2。学生能听懂建立直线的点斜式的过程,但可能会不知道为什么要这么做。因此还是要跟学生讲清坐标法的实质把几何问题转化成代数问题,用代数运算研究几何图形性质。
3。由于学生没有学习曲线与方程,因此学生难以理解直线与直线的方程,甚至认为验证直线是方程的直线是多余的。这里让学生初步理解就行,随着后面教学的深入和反复渗透,学生会逐步理解的。
四、教法与学法分析
1、教法分析
新课标指出,学生是教学的主体。教师要以学生活动为主线。在原有知识的基础上,构建新的知识体系。本节课可采用启发式问题教学法教学。通过问题串,启发学生自主探究来达到对知识的发现和接受。通过纵向挖掘知识的深度,横向加强知识间的联系,培养学生的创新精神。并且使学生的有效思维量加大,随着对新知识和方法产生有意注意,使能力与知识的形成相伴而行,使学生在解决问题的同时,形成方法。
2、学法分析
改善学生的学习方式是高中数学课程追求的基本理念。学生的数学学习活动不仅仅限于对概念结论和技能的记忆、模仿和积累。独立思考,自主探索,动手实践,合作交流,阅读自学等都是学习数学的重要方式,这些方式有助于发挥学生学习主观能动性,使学生的学习过程成为在教师引导下的再创造的过程。为学生形成积极主动的、多样的学习方式创造有利的条件。以激发学生的学习兴趣和创新潜能,帮助学生养成独立思考,积极探索的习惯。
通过直线的点斜式方程的推导,加深对用坐标求方程的理解;通过求直线的点斜式方程,理解一个点和方向可以确定一条直线;通过求直线的斜截式方程,熟悉用待定系数法求的过程,让学生利用图形直观启迪思维,实现从感性认识到理性思维质的飞跃。让学生从问题中质疑、尝试、归纳、总结,培养学生发现问题、研究问题和分析解决问题的能力。
五、教学过程设计
问题1:在直角坐标系内确定直线一条直线几何要素是什么?如何将这些几何要素代数化?
[设计意图]让学生理解直线上的一点和直线的倾斜角的代数含义是这个点的坐标和这条直线的斜率。
问题2:建立直线方程的实质是什么?
[设计意图]建立直线方程就是将确定直线的几何要素用代数形式表示出来。也就是将直线上点的坐标满足的条件用方程表示出来。
引例:若直线经过点,斜率为,点在直线上运动,那么点的坐标满足什么条件?
[设计意图]让学生通过具体例子经历求直线的点斜式方程的过程,初步了解求直线方程的步骤。
问题2。1要得到坐标满足什么条件,就是找出与、斜率为之间的关系,它们之间有何种关系?
(过与两点的直线的斜率为)
[设计意图]让学生寻找确定直线的条件,体会动中找静。
问题2。2如何将上述条件用代数形式表示出来?
[设计意图]让学生理解和体会用坐标表示确定直线的条件。
用代数式表示出来就是,即。
问题2。3为什么说是满足条件的直线方程?
[设计意图]让学生初步感受直线与直线方程的关系。
此时的坐标也满足此方程。所以当点在直线上运动时,其坐标满足。
另外以方程的解为坐标的点也在直线上。
所以我们得到经过点,斜率为的直线方程是。
问题2。4:能否说方程是经过,斜率为的直线方程?
[设计意图]让学生初步感受直线(曲线)方程的完备性。尽管学生不可能深刻理解直线(曲线)方程的完备性,但在这里仍要渗透,为后因理解曲线方程的埋下伏笔。
问题3:推广:已知一直线过一定点,且斜率为k,怎样求直线的方程?
[设计意图]由特殊到一般的学习思路,培养学生的是归纳概括能力。
问题4:直线上有无数个点,如何才能选取所有的点?以前学习中有没有类似的处理问题的方法?
[设计意图]引导学生掌握解析几何取点的方法。
引导学生求出直线的点斜式方程
注:在求直线方程的过程中要说明直线上的点的坐标满足方程,也要说明以方程的解为坐标的点在直线上,即方程的解与直线上的点的坐标是一一对应的。为以后学习曲线与方程打好基础。教学中让学生感觉到这一点就可以。不必做过多解释。
问题5:从求直线方程的过程中,你知道了求几何图形的方程的步骤有哪些吗?
[设计意图]让学生初步感受解析几何求曲线方程的步骤。
①设点———用表示曲线上任一点的坐标;
②寻找条件————写出适合条件;
③列出方程————用坐标表示条件,列出方程
④化简———化方程为最简形式;
⑤证明————证明以化简后的方程的解为坐标的点都是曲线上的点。
例1分别求经过点,且满足下列条件的直线的方程,并画出直线。
⑴倾斜角
⑵斜率
⑶与轴平行;
⑷与轴平行。
[设计意图]让学生掌握直线的点斜式的使用条件,把直线的点斜式方程作公式用,让学生熟练掌握直线的点斜式方程,并理解直线的点斜式方程使用条件。
注:⑴应用直线的点斜式方程的`条件是:①定点,②斜率存在,即直线的倾斜角。
⑵与的区别。后者表示过,且斜率为k的直线方程,而前者不包括。
⑶当直线的倾斜角时,直线的斜率,直线方程是。
⑷当直线的倾斜角时,此时不能直线的点斜式方程表示直线,直线方程是。
练习:1。。
2。已知直线的方程是,则直线的斜率为,倾斜角为,这条直线经过的一个已知点为。
[设计意图]在直线的点斜式方程的逆用过程中,进一步体会和理解直线的点斜式方程。
问题6:特别地,如果直线的斜率为,且与轴的交点坐标为(0,b),求直线的方程。
[设计意图]由一般到特殊,培养学生的推理能力,同时引出截距的概念和直线斜截式方程。
将斜率与定点代入点斜式直线方程可得:
说明:我们把直线与y轴交点(0,b)的纵坐标b叫做直线在y轴上的截距。这个方程是由直线的斜率与它在y轴上的截距b确定,所以叫做直线的斜截式方程。
注(1)截距可取任意实数,它不同于距离。直线在轴上截距的是。
(2)斜截式方程中的k和b有明显的几何意义。
(3)斜截式方程的使用范围和斜截式一样。
问题7:直线的斜截式方程与我们学过的一次函数的类似。我们知道,一次函数的图像是一条直线。你如何从直线方程的角度认识一次函数?一次函数中k和b的几何意义是什么?
[设计意图]让学生理解直线方程与一次函数的区别与联系,进一步理解解析几何的实质。函数图像是以形助数,而解析几何是以数论形。
练习:1。。
2。直线的斜率为2,在轴上的截距为,求直线的方程。
[设计意图]让学生明确截距的含义。
3。直线过点,它的斜率与直线的斜率相等,求直线的方程。
[设计意图]让学生进一步理解直线斜截式方程的结构特征。
4。已知直线过两点和,求直线的方程。
[设计意图]让学生能合理选择直线方程的不同形式求直线方程,同时为下节学习直线的两点式方程埋下伏笔。
例2:已知直线,试讨论
(1)与平行的条件是什么?
(2)与重合的条件是什么?
(3)与垂直的条件是什么?
说明:①平行、重合、垂直都是几何上位置关系,如何用代数的数量关系来刻画。
②教学中从两个方面来说明,若两直线平行,则且反过来,若且,则两直线平行。
③若直线的斜率不存在,与之平行、垂直的条件分别是什么?
练习:
问题8:本节课你有哪些收获?
要点:
(1)直线方程的点斜式、斜截式的命名都是顾名思义的,要会加以区别。
(2)两种形式的方程要在熟记的基础上灵活运用。
总结:制定教学计划的主要目的是为了全面了解学生的数学学习历程,激励学生的学习和改进教师的教学。
高一下册数学教学计划 篇3
一、基本情况分析:
1、学生情况分析:4个重点班的学生,基础比较好,学习积极性高。普通班学生在基础、学习习惯、学习自觉性等方面都有一定差距,因此在教学中需时时提醒学生,培养其自觉性。学生存在的最大问题是计算能力太差,学生不喜欢去算题,嫌麻烦,只注重思路,因此在以后的教学中,重点在于强化基础知识,培养学生的计算能力,提高思维能力,争取每堂课教学一个知识点,掌握一个知识点。
2、教材分析:本学期时间短,教学任务是必修4第二章,必修5,必修2涉及平面向量,解三角形,数列,空间几何体,点,线面的位置关系,直线与方程,圆与方程。
二、教学内容:
本学期的数学教学内容是高一数学下册,包括第四章《三角函数》和第五章《平面向量》。按照数学教学大纲的要求,第四章教学需要36个课时(不包含考试与测验的时间);第五章的教学需要22个课时,共计需要58个课时。本学期有两次月考和五一长假,实际授课时间为18周,按每周6课时计算,数学课时达到110课时左右,时间相当充足。这为我们数学组全面贯彻“低切入、慢节奏”的教学方针提供了保障,也是我们提高学生数学水平的又一次极好的机会。
三、本学期教学目标
在基础知识方面让学生掌握高一有关的概念、性质、法则、公式、定理以及由其内容反映出来的数学思想和方法。在基本技能方面能按照一定的程序与步骤进行运算、处理数据、能使用计数器及简单的推理、画图。
能运用数学概念、思想方法,辨明数学关系,形成良好的思维品质;会根据法则、公式正确的进行运算、处理数据,并能根据问题的情景设计运算途径;会提出、分析和解决简单的带有实际意义的或在相关学科、生产和生活的数学问题,并进行交流,形成数学的意思;从而通过独立思考,会从数学的角度发现和提出问题,进行探索和研究。
培养学生,学习数学的兴趣、信心和毅力及实事求是的科学态度,勇于探索创新的精神,及欣赏数学的美学价值,并懂的数学来源于实践又反作用于实践的观点;数学中普遍存在的对立统一、运动变化、相互联系、相互转化等观点。
四、教学计划:
本学期的期中考试(预计在4月14号至4月17号进行)涵盖的内容为第四章的前9节,由于课时量充足,第10节“正切函数的图像和性质”以及第11节“已知三角函数值求角”将在上半学期讲授,这样下半个学期的教学任务为30个课时。
我们备课组经过认真的思索、充分的讨论,将期中考试前的教学进度安排如下:
(一单元)任意角的三角函数
§4.1角的概念的推广3课时
§4.2弧度制3课时
§4.3任意角的三角函数3~4课时
§4.4同角三角函数的基本关系4课时
§4.5正弦、余弦的诱导公式4课时
复习课(习题课)4课时
单元测试及讲评2课时
(二单元)两角和与差的三角函数
§4.6两角和与差的正弦、余弦、正切7课时
习题课3课时
§4.7两倍角的正弦、余弦、正切4课时
习题课2课时
单元测试及讲评2课时
(三单元)三角函数的图象及性质
§4.8正弦、余弦函数的图象和性质5课时
习题课2课时
§4.9函数的图象4课时总计授课53课时,余下课时可安排期中复习。
期中考试后的授课计划:
§4.10正切函数的图象和性质3课时
§4.11已知三角函数值求角4课时
习题课2课时
第四章复习4课时
第五章
(一单元)向量及其运算
§5.1向量1课时
§5.2向量的加减法2课时
§5.3实数与向量的积3课时
§5.4平面向量的坐标计算3课时
§5.5线段的定比分点2课时
§5.6平面向量的数量积及运算律3课时
§5.7平面向量数量积的坐标表示2课时
§5.8平移2课时
习题课3课时
单元测试与讲评(随堂)2课时
§5.9正弦、余弦定理5课时
§5.10解斜三角形应用举例2课时
实习与研究性课题4课时
习题课3课时
单元测试与讲评2课时
总结:以上就是本学期的数学教学计划,希望能对你有所帮助,如有不足之处,请批评指正!
高一下册数学教学计划 篇4
教材教法分析
本节课是苏教版普通高中课程标准实验教科书数学必修(2)第2章第三节的第一节课.该课是在二维平面直角坐标系基础上的推广,是空间立体几何的代数化.教材通过一个实际问题的分析和解决,让学生感受建立空间直角坐标系的必要性,内容由浅入深、环环相扣,体现了知识的发生、发展的过程,能够很好的诱导学生积极地参与到知识的探究过程中.同时,通过对《空间直角坐标系》的学习和掌握将对今后学习本节内容《空间两点间的距离》和选修2-1内容《空间中的向量与立体几何》有着铺垫作用.由此,本课打算通过师生之间的合作、交流、讨论,利用类比建立起空间直角坐标系.
学情分析
一方面学生通过对空间几何体:柱、锥、台、球的学习,处理了空间中点、线、面的关系,初步掌握了简单几何体的直观图画法,因此头脑中已建立了一定的空间思维能力.另一方面学生刚刚学习了解析几何的基础内容:直线和圆,对建立平面直角坐标系,根据坐标利用代数的方法处理问题有了一定的认识,因此也建立了一定的转化和数形结合的思想.这两方面都为学习本课内容打下了基础.
教学目标
1.知识与技能
①通过具体情境,使学生感受建立空间直角坐标系的必要性
②了解空间直角坐标系,掌握空间点的坐标的确定方法和过程
③感受类比思想在探究新知识过程中的作用
2.过程与方法
①结合具体问题引入,诱导学生探究
②类比学习,循序渐进
3.情感态度与价值观
通过用类比的数学思想方法探究新知识,使学生感受新旧知识的联系和研究事物从低维到高维的一般方法.通过实际问题的引入和解决,让学生体会数学的实践性和应用性,感受数学刻画生活的作用,不断地拓展自己的思维空间.
教学重点
本课是本节第一节课,关键是空间直角坐标系的建立,对今后相关内容的学习有着直接的影响作用,所以本课教学重点确立为空间直角坐标系的理解.
教学难点
通过建立恰当的空间直角坐标系,确定空间点的坐标。
先通过具体问题回顾平面直角坐标系,使学生体会用坐标刻画平面内任意点的位置的方法,进而设置具体问题情境促发利用旧知解决问题的局限性,从而寻求新知,根据已有一定空间思维,所以能较容易得出第三根轴的建立,进而感受逐步发展得到空间直角坐标系的建立,再逐步掌握利用坐标表示空间任意点的位置.总得来说,关键是具体问题情境的设立,不断地让学生感受,交流,讨论.