欢迎阅读《比和比例》教案(精选4篇),内容由多美网整理,希望对大家有所帮助。
《比和比例》教案 篇1
【教学内容】
教科书第66~67页例2、例3及相关练习。
【教学目标】
1.通过对分数基本性质的记忆和沟通分数与比、除法之间的联系,理解比的基本性质。
2.能够运用比的基本性质把比化成最简单的整数比。
3.渗透转化的数学思想,培养学生的抽象概括能力,并使学生认识事物之间都是存在内在联系的。
【教学重、难点】
理解比的基本性质,并运用比的基本性质把比化成最简单的整数比。
【教学过程】
一、复习准备
1.求比值。
8∶4=48∶12=16∶8=
24∶18=40∶16=15∶5=
.准备题。
(1)找出下列分数中相等的分数,并说说你是根据什么找的?(略)
学生找出后,教师作引导性提问:它们为什么相等?谁能完整地说出分数的基本性质?
(2)在()内填上适当的数。
3÷4 =( )4=( )40= ( )÷12 =0.75
58=5:( )
6:7 =( )7=( )7
9:( )=( ):16
教师:由上面这两组题你想到了什么?
小结: 根据分数与除法的关系,除法与比的关系,比的前项相当于分数的分子,比的后项相当于分数的分母,比值相当于分数值。
比也可以写成分数的形式,如5:8可以写成5/8。
二、学习新知
1.出示例2:观察下面的比是怎样变化的。
200/240=20/24=10/12=5/6
↓ ↓↓↓
200∶240=20∶24=10∶12=5∶6
独立观察,思考:比的前项、后项发生了什么变化?
分组讨论:看看上面的这个例子,想一想:在比中有什么样的规律?
学生进行小组总结后,小组间交流汇报。 通过交流总结出比的基本性质。
2.概括比的基本性质:比的前项和后项同时乘以或者同时除以相同的数(0除外),比值不变。
3.应用比的基本性质化简比。
(1)让学生在例2中找出你认为最简单的整数比,明确什么是最简整数比。
(2)出示例3:化简下面各比。
①15∶12②14∶56
③30∶60∶120
师生共同观察,找出各组比的特征,然后进行分析 、化简。
第①题:这个比的前项和后项都是整数,如何化简?(用比的前、后项分别除以它们的最大公约数,直到前后项是互质数为止)
第②题:这个比的前项和后项都是什么数,怎样才能把它们转化成整数比?(学生观察分析后,独立探索化简的方法,再交流优化的化简方法)
学生交流完后,教师进一步作小结:比的前项和后项都是分数的,一般把比的前项和后项同乘两个分数分母的最小公倍数,把它们转化成两个整数比,再进一步化简。
第③题:这个比有什么特点?(三个数的连比)又如何化简呢?化简两个整数比的方法对于化简三个整数连比是否适用呢?
学生讨论后尝试化简,填在书上。
教师提示:在三个数的连比中,比号不表示除号。
三、巩固练习
1.用已经学过的知识试着将第67页“试一试”中的比化成最简整数比。
学生化简后交流反馈,说说方法。师生共同小结方法及注意点:应用比的基本性质把整数比、小数比、分数比化成最简单的.整数比时,第一步一般都化成整数比,接着再利用比的基本性质把比的前、后项同除以它们的最大公约数,使比的前、后项成为互质数。
2.出示练习题:化简下面各比,并求出比值。
比最简单的整数比比值
9:54
34∶67
5.8∶2.9
200∶150∶26
讨论:化简比与求比值有什么区别?(求比值就是求“商”,得到的是一个数,可以写成分数、小数,有时也能写成整数。而化简比则是为了得到一个最简单的整数比,可以写成真分数或假分数的形式,但是不能写成带分数、小数或整数)
3.学生独立完成练习十五第3题,完成后用投影仪集体订正。
4.拓展练习。
(1)六(3)班男生人数是女生的1.2倍,男、女生人数的比是( ),男生和全班人数的比是( ),女生和全班人数的比是( )。
(2)一个长方形周长是30厘米,长与宽的比是7∶3,求长与宽各是多少厘米?
四、课堂小结
通过今天的学习,你又掌握了哪些知识?什么是比的基本性质?应用比的基本性质如何化简比?
《比和比例》教案 篇2
教学内容:
教材第84页例1---3题,练习十七第1、3题。
教学目标:
1、进一步理解比和比例的意义与基本性质,掌握比和分数、除法的关系。能够正确、迅速地求出比值和化简比。
2、应用比的意义求出平面图的比例尺,并根据比例尺求图上距离和实际距离。
3、体验数学与生活的联系,培养学生用数学眼光观察生活的习惯。
教学重点:
掌握比和比例的'意义与基本性质。
教学难点:
根据比例尺求图上距离和实际距离。
教具准备:
多媒体课件
教学过程:
一、 导言引入课题
比和比例(一)
二、教学例1
先在下表中写比和比例的一些知识,再举例说明。
比 比例
意义
各部分名称
基本性质
三、教学例2
比和分数、除法有什么联系?先填写下来,说一说它们的区别。
联系 例子
各部分名称
分数 分子 分数线 分母 分数值
除法
比
做一做:5:6=( )( )
四、教学例3
比的基本性质、分数的基本性质、商不变规律之间有什么联系?
1、学生交流
2、化简比。
3、化简比与求比值有什么不同之处?
一般方法 结果
求比值
化简比
五、解比例
X= :2【说一说思路和方法】
六、比例尺
1、什么叫做比例尺?
2、说出下面各比例尺的具体意义。
①比例尺1:3000000表示_____________
②比例尺20:1表示 _____________
3、求比例尺: 一条绿化带长350米,在平面图上用7厘米的线段表示。这幅图的比例尺是多少?
4、求实际距离:在比例尺是 的地图上,量得A到B的距离是5厘米。求AB两地的实际距离?
5、求图上距离:甲乙两地相距200千米,在比例尺是 的地图上,甲乙两地用多少厘米表示?
七、知识应用
练习十七第1、3题。
八、总结梳理
回顾本节课的学习,说一说你有哪些收获?
板书设计:
比和比例(一)
比和比例的意义与性质。
比和分数、除法的关系。 比和比例(一)
比、比例的基本性质的用途。
比例尺。
比例尺的应用。
教学反思:
在教学中,让学生重温小学阶段比和比例的有关知识并进行系统整理。先让学生回忆,配合相关的练习题,让学生进行训练,加深学生的理解。进一步理解掌握比和分数、除法的关系。能够应用比的意义求出平面图的比例尺,并根据比例尺求图上举例和实际距离培养学生用数学眼光观察生活的习惯。
《比和比例》教案 篇3
教学内容:
教材第84页例4,练习十七第2、4----7题。
教学目标 :
1、理解正、反比例的意义。能正确判断两种量是否成正比例或反比例。能熟练地运用比例来解决有关问题。
2、经历交流、讨论、练习等学习过程,使学生进一步认识事物之间的联系和发展变化的规律,提高学生运用比例来解决有关问题的能力
3、培养学生用发展变化的观点来分析问题的能力,渗透函数思想。
教学重点:
掌握正、反比例的.意义。
教学难点:
正确判断两种量成什么比例。
教具准备:
多媒体课件。
教学过程:
一、明确学习任务
出示课题
二、正、反比例的意义
1、例4:你是怎样判断两种量成正比例还是成反比例的?
正比例
①两种相关联的量;
②其中一种量增加,另一种量也随着增加,一种量减少,另一种量也减少;
③两种量的比值一定。
反比例
①两种相关联的量;
②其中一种量增加,另一种量反而减少,一种量减少,另一种量反而增加;
③两种量的积一定。
2、你能用字母表示正、反比例的关系吗? =k(一定) 成正比例
y =k(一定) 成反比例
三、判断两种量是否成正比例或反比例。成什么比例?
①速度一定,路程和时间。
②正方形的边长和它的面积。
③订《少年报》数量和所需钱数。
④小明从家到学校,行走的速度和时间。
⑤圆的周长和半径。
⑥圆的面积和半径。
四、用比例解决问题。
1、说一说用比例解决问题的步骤。
2、举例:修一条公路,全长12km,开工3天修了1.5km。照这样计算,修 完这条公路一共需要多少天?
A.两种相关联的量是什么?
B.两种量成什么比例?说明理由,写出等量关系式
C.设未知数X,列出比例式
D.解比例并检验
五、知识应用
独立完成练习十七第2、4----7题。
六、课堂总结
回顾本节课的学习,说一说你有哪些收获?
板书设计:
比和比例(二)
A.认真审题,找出两种相关联的量;
B.判断两种量成时难免比例;用比例解决问题的过程、步骤
C.设未知数X;
D.列出比例式(含有未知数);
E.解比例、检验。
教学反思:
在教学中,以学生为主体,教师为主导,训练为主线。先让学生回忆,重温小学阶段正、反比例的意义及用比例知识解决问题的有关知识并进行系统整理,配合相关的练习题,让学生进行训练,加深学生的理解提高学生运用比例来解决有关问题的能力。
《比和比例》教案 篇4
教学内容
教科书第48~50页例1、例2,课堂活动及练习十一1,2题。
教学目标
1.理解比例的意义,认识比例各部分的名称。
2.让学生经历探讨两内项之积等于两外项之积的过程,使之更好理解并掌握比例的基本性质。并能运用比例的意义和比例的基本性质,判断两个比能否组成比例,会组比例。
3.培养学生自主参与的意识、主动探究的精神;培养学生进行初步的观察、分析、比较、判断、概括的能力,发展学生思维,能够在解决问题的过程中体验到学习数学的愉悦。
教学重点
理解比例的意义和基本性质。
教学难点
应用比例的意义和基本性质判断两个比能否组成比例,并能正确地组成比例。
教学准备
课件,扑克牌10张(2~10以及A),圆规一个。
教学过程
一、复习准备
(1)一辆汽车4时行160 km,路程和时间的比是多少?这个比表示什么?
(2)求下面各比的比值,你发现了什么?
12∶16 34∶18 4.5∶2.7 10∶6
教师:同学们发现4.5∶2.7和10∶6的结果是一样的,说明了什么?(这两个比相等。)这两个比你能用等号连接起来吗?(能。)请同学们用等号把这两个比用等号连接起来。
二、探究新知
1.提出问题
这节课我们在比的知识基础上,进一步学习新知识。
揭示课题--比例的意义和基本性质。板书:比例的意义和基本性质
2.探究比例的意义
课件出示例1:两组同学同时在操场探讨竹竿长与影子长之间的规律。列表如下:
竹竿长26
影子长39
教师:观察上表,你能写出多少个有意义的比?并求出比值。把这些比都写出来。
学生讨论并写出比,完成后抽几个学生的作业在视频展示台上展示,教师选几个有代表性的比在黑板上板书。
教师:观察这些比,哪些能用等号连接?把能用等号连接的比用等号连接起来。
学生口答,教师板书:3∶2=9∶6,6∶2=9∶332=96,62=93
教师:这些都是比例。你能用自己的语言说一说什么是比例吗?
引导学生用自己的语言归纳比例的意义。(板书:比例的'意义)
教师:2∶9和3∶6能组成比例吗?你是怎么知道的?
指导学生说出判断两个比能不能组成比例,要看他们的比值是否相等。再判断2∶5和80∶200能否组成比例?并说明理由。
组织并指导学生完成书上第50页的课堂活动。
3.认识比例的各部分
教师:在一个比例里,有四个数,这四个数分别叫什么名字?同学们看看书就明白了。
指导学生看书后汇报。
教师:请同学们分别找出3∶2=9∶6和6/2=9/3的内项和外项。
学生找出后,随学生的汇报教师板书:
要求学生找出刚才自己说的几个比例的内项和外项,然后引导学生分析归纳出:在比例里,靠近等号的两个数是内项,剩下的两个数是外项;如果写成分数形式,那么可以用交叉的方法找出比例的内项和外项。
4.教学比例的基本性质
教师:前面我们已经探究发现了比例的一个秘密,就是组成比例的两个比的比值相等,比例还有一个秘密,你们愿意去寻找吗?(愿意)你们任意找一个比例,把它们的内项和外项分别乘起来,又可以发现什么?
学生初步发现两个内项的积等于两个外项的积后,教师提醒学生:是不是每个比例都有这个规律,多找几个比例试一试,如果把这个比例写成分数形式,它是不是也有这样的规律呢?
教师:同学们通过多个比例的探究,发现它们都有这个规律。你能用你自己的语言归纳这个规律吗?
指导学生归纳后,教师板书:在比例里,两个内项的积等于两个外项的积,并且告诉学生,这就是比例的基本性质。
5.运用比例的基本性质判断两个比是否能组成比例
教师:用比例的基本性质,也可以判断两个比能不能组成比例。请同学们用比例的基本性质判断一下,0.4∶25能否和1.2∶75组成比例?为什么?
学生讨论后回答:因为0.475=251.2,所以0.4∶25和1.2∶75能组成比例。
三、巩固提高
(1)说一说比和比例有什么区别。
讨论后指名说:比是表示两个数相除的关系,有两项;比例是一个等式,表示两个比相等的关系,有四项。
(2)在6∶5=30∶25这个比例中,外项是()和(),内项是()和()。根据比例的基本性质可以写成()()=()()。
(3)下面的四个数可以组成比例吗?把组成的比例写出来(能组几个就组几个)。2,3,4和6
四、全课总结
先让学生总结本课所学内容,谈感想说收获,教师再进行全课总结。
五、课堂作业
(1)指导学生完成练习十一的第1题。
要求:第(1)小题用比的意义来判断,第(2)小题用比例的基本性质判断,第(3),(4)小题学生自由选择方法判断。
(2)学生独立完成练习十一的第2题,教师订正。