欢迎阅读高二上学期数学教学计划(精选4篇),内容由多美网整理,希望对大家有所帮助。
高二上学期数学教学计划 篇1
高二上学期数学教学计划锦集6篇
日子在弹指一挥间就毫无声息的流逝,我们的工作同时也在不断更新迭代中,现在就让我们好好地规划一下吧。那么你真正懂得怎么制定计划吗?以下是小编收集整理的高二上学期数学教学计划6篇,欢迎大家分享。
高二上学期数学教学计划 篇2
一、指导思想
1、培养学生的逻辑思维能力、运算能力、空间想象能力,以及综合运用有关数学知识分析问题和解决问题的能力。使学生逐步地学会观察、分析、综合、比较、抽象、概括、探索和创新的能力;运用归纳、演绎和类比的方法进行推理,并正确地、有条理地表达推理过程的能力。
2、根据数学的学科特点,加强学习目的性的教育,提高学生学习数学的自觉心和兴趣,培养学生良好的学习习惯,实事求是的科学态度,顽强的学习毅力和独立思考、探索创新的精神。
3、使学生具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,理解数学中普遍存在着的运动、变化、相互联系和相互转化的情形,从而进一步树立辩证唯物主义和历史唯物主义世界观。
二、目的要求
1。深入钻研教材,以教材为核心,“以纲为纲,以本为本”深入研究教材中章节知识的内外结构,熟练把握知识的逻辑体系和网络结构,细致领会教材改革的精髓,把握通性通法,逐步明确教材对教学形式、内容和教学目标的影响。
2。因材施教,以学生为学习的主体,构建新的认知体系,营造有利于学生学习的氛围。
3。加强课堂教学研究,科学设计教学方法,扎实有效的提高课堂教学效果,全面提高数学教学质量。
三、具体措施
1。不孤立记忆和认识各个知识点,而要将其放到相应的体系结构中,在比较、辨析的过程中寻求其内在联系,达到理解层次,注意知识块的复习,构建知识网路。注重基础知识和基本解题技能,注意基本概念、基本定理、公式的辨析比较,灵活运用;力求有意识的分析理解能力;尤其是数学语言的表达形式,推力论证要思路清晰、整体完整。
2。学会分析,首先是阅读理解,侧重于解题前对信息的捕捉和思路的探索;其次是解题回顾,侧重于经验及教训的总结,重视常见题型及通法通解。
3。以“错”纠错,查缺补漏,反思错误,严格训练,规范解题,养成:想明白,写清楚,算准确的习惯,注意思路的清晰性、思维的严谨性、叙述的条理性、结果的准确性,注重书写过程,举一反三,及时归纳,触类旁通,加强数学思想和数学方法的应用。
4。协调好讲、练、评、辅之间的关系,追求数学复习的最佳效果,注重实效,努力提高复习教学的效率和效益;精心设计教学,做到精讲精练,不加重学生的负担,避免“题海战” ,精心准备,讲评到为,做到讲评试卷或例题时:讲清考察了那些知识点,怎样审题,怎样打开解题思路,用到了那些方法技巧,关键步骤在那里,哪些是典型错误,是知识和是逻辑,是方法、是心理上、策略上的错误,针对学生的错误调整复习策略,使复习更加有重点、针对性,加快教学节奏,提高教学效率。
5。周密计划合理安排,现数学学科特点,注重知识能力的提高,提升综合解题能力,加强解题教学,使学生在解题探究中提高能力。
6。多从“贴近教材、贴近学生、贴近实际”角度,选择典型的数学联系生活、生产、环境和科技方面的问题,对学生进行有计划、针对性强的训练,多给学生锻炼各种能力的机会,从而达到提升学生数学综合能力之目的。不脱离基础知识来讲学生的能力,基础扎实的学生不一定能力强。教学中,不断地将基础知识运用于数学问题的解决中,努力提高学生的学科综合能力。
新的学期是新的起点,新的希望。通过上面的计划,我相信自己在本学期一定能够将两个班的数学成绩带上去,我相信,我能行。
高二上学期数学教学计划 篇3
1。解析几何是利用代数方法来研究几何图形性质的一门学科,它包括平面解析几何和空间解析几何两部分。它的主要研究对象是直线和平面、二次曲线和二次曲面。在大学阶段,“解析几何”是以圆锥曲线和圆锥曲面为研究对象的一门学科,研究三元二次方程表示的曲线和曲面,如空间直线、平面、柱面、锥面、旋转曲面和二次曲面的方程等,研究的内容比较固定,研究方法比较成熟。高中阶段主要研究二元二次方程所表示的曲线,比如圆、椭圆、双曲线、抛物线等。
2。“解析几何思想”代表了研究曲线和曲面的一般方法和手段,即用代数为工具解决几何问题。用解析几何的思想方法来研究几何问题,思维工程可以表现为以下步骤:第一,用代数的语言来描述几何图形,例如“点”可以用“数对”表示,“曲线”可以用“方程”表示等;第二,把几何问题转化为代数问题,例如,“两直线平行”可以转化为“两直线方程组成的方程组无解”等;第三,实施代数运算,求解代数问题;第四,将代数解转化为几何结论。随着数学本身的发展,出现了代数数论、代数几何等的数学分支,而拓扑学、泛函等代数工具都可以作为研究心得曲线和曲面的工具,这些都是“解析几何思想”的发展个推广。解析几何初步的重点是帮助学生理解解析几何的基本思想,即把代数作为一种工具和手段来研究几何问题。
3。“坐标系”是解析几何思想的主要组成部分,因为建立了坐标系,就能把曲线和曲面的性质用代数来表示,从而把几何问题转化为代数问题来解决。适当地选择坐标系可以大大简化对图形性质的研究,但图形的性质不会竖着坐标系的变化而改变。我们要研究的正是那些和坐标系的选择无关的性质;或者说建立坐标系正是为了摆脱图形对坐标系的依赖,这在对数上就表现为某个线性变换群下的不变量和不变关系。
4。圆锥曲线是我们生活中最基本的图形。①圆锥曲线(面)可以帮助我们刻画一些基本的运动。例如,太阳系中,八大行星的运动轨迹都是椭圆。②光学性质和圆锥曲线是密不可分的,基本的光学性质都是由圆锥曲线体现出来的。例如,探照灯就是利用抛物面的光学性质制作而成的,它可以将点光源发出的光折射成平行光,照射到足够远的地方。几乎所有的光学仪器都是依照圆锥曲线(面)的性质制成的。③研究圆锥曲线(面)的性质时体现解析几何本质的最好载体,即便是在大学数学系的学习中,如何利用方程的系数确定二次曲线的形状,揭示其规律也是数学的经典内容。
高二上学期数学教学计划 篇4
教学目标;
(1)了解频数、频率的概念,了解全距、组距的概念;
(2)能正确地编制频率分布表;会用样本频率分布去估计总体分布;
(3)通过对现实生活的探究,感知应用数学知识解决问题的方法,理解数形结合的数学思想和逻辑推理的数学方法、
教学重点:正确地编制频率分布表、
教学难点;会用样本频率分布去估计总体分布
内容分析
1、在统计中,用样本的有关情况估计总体的相应情况大体上有两类:一是用样本的频率分布去估计总体分布;二是用样本的某种数字特征去估计总体相应数字特征。本节课解决前者的问题。
2、讨论样本频率分布的内容在初中”统计初步”中进行了简要的介绍,由于很长时间没有接触这方面知识,因此有必要通过一例重温频率分布有关知识,突出掌握解决问题的步骤,使学生了解处理数据的具体方法。
3、介绍历史上从事抛掷硬币的几个案例,学习科学家对真理执着追求的精神。
4、频率分布的条形图与直方图是有区别。条形图是用高度来表示频率,直方图是用面积来表示频率。
教学过程
1、引入新课
(1)介绍对“抛掷硬币”试验进行研究的科学家。
(2)本次试验结果。
(3)画出频率分布的条形图。
(4)注意点:①各直方长条的宽度要相同;②相邻长条之间的间隔要适当。
(5)结论:当试验次数无限增大时,两种试验结果的频率大致相同。
2、总体分布
精确地反映了总体取值的概率分布规律。研究概率分布往往可以研究其频数分布、频率分布,及累积频数分布和累积频率分布。后者作为阅读教科书内容。
3、复习频率分布
(演示)问题:有一个容量为20的样本,数据的分组及各组的频数如下:
[12、5,15、5) 2 [15、5,18、5) 3 [18、5,21、5) 5
[21、5,24、5) 4 [24、5,27、5) 1 [27、5,30、5] 5
(1)列出样本的频率分布表和画出频率分布直方图。
(2)频率直方图的横轴表示___________;纵轴表示___________。频率分布直方图中,各小矩形的面积等于___________,各小矩形面积之和等于___________。频率直方图的主要作用是___________。
讲解例题
为了了解学生身体的发育情况,对某重点中学年满17岁的60名男同学的身高进行了测量,结果如下:
身高 1、57 1、59 1、60 1、62 1、64 1、65 1、66 1、68
人数 2 1 4 2 4 2 7 6
身高 1、69 1、70 1、71 172 1、73 1、74 1、75 1、76 1、77
人数 8 7 4 3 2 1 2 1 1
(1)根据上表,估计这所重点中学年满17岁的男学生中,身高下低于1、65m且不高于1、71m的约占多少?不低于1、63m的约占多少?
(2)画出频率分布直方图,说出该校年满17岁的男同学中身高在哪个范围内的人数所占比例最大?如果该校年满17岁的男同学恰好是300人,那么在这个范围内的人数估计约有多少人?
(过程略)
注意点:主要包括两部分:前面重点讲解如何根据数据画出频率分布的直方图,后面重点讲解如何根据样本的频率分布去估计总体的相关情况。
(a)计算最大值与最小值的差
(b)确定组距与组数。
组距的确定应根据数据总体情况,自主选择。本题将组距定为2较为合适,因而组数为11。
(c)决定分点。
分点要比数据多一位小数,便于分组。分组区间采用左闭右开。
(d)列出频率分布表(见教科书)。
(e)画出频率分布图(见教科书)。
4、得到样本频率后,应对总体的相应情况进行估计
5、课堂练习
教科书习题 1、2第2题。
板书设计
一、概念理解 二、应用
1、频数、频率的容量的关系 例
2、频率的取值范围 三、小结
3、分布频率分布表
四、作业
