欢迎阅读《比和比的应用》数学教案(精选4篇),内容由多美网整理,希望对大家有所帮助。
《比和比的应用》数学教案 篇1
【教学内容】
北师大版小学数学六年级(上册)第四单元第54页“比的应用”。
【教学分析】
这部分教学内容是在学生已经掌握了比的意义和比的化简的基础上展开学习的,属于按比例分配的内容,但教材并没有给出这个名称,目的有两个,一是由于按比例分配的问题有一定的解题方法,易把解决问题变成套用方法。二是如果引入,学生易问什么是比例?,这样,在学生刚引入比的概念时,又要去区分比例是什么?而忽视了比的概念,因此,教学时,要充分发挥学生的想象,从多角度思考,用比的意义来解决实际问题。
【教学目标】
1、能运用比的意义解决按照一定的比进行分配的实际问题。
2、进一步体会比的意义,感受比在生活中的广泛应用,提高解决问题的能力。
3、培养学生数学学习的兴趣。
【教学重点】
1、理解按一定比例来分配一个数量的意义。
2、根据题中所给的比,掌握各部分量占总数量的几分之几,能熟练地用乘法求各部分量。
【教法学法】
教师是学生学习活动的组织者,引导者,合作者,所以,在教学中,我采用引导式教学,让学生独立思考,自主探究,合作交流,充分发挥学生的学习主体作用。
【学具准备】
为了使学生更好的在学习中探究,我要求学生课前准备圆片若干个。
【教学过程】
一、创设情境,生成问题
1、课件出示课本主题图:幼儿园大班30人,小班20人,把这些橘子分给大班和小班,怎么分合理?
2、请同学们想一想:你认为怎么分合理?说一说你的分法。通过汇报交流确定按两个班的人数比,也就是3:2分配比较合理。
(设计意图)能激发学生学习数学的兴趣,最需要的是从现实出发,从身边找数学问题,也就是说:“学生的数学学习内容应当是现实的、有意义的、富有挑战的。”利用给人数不同的两个班分橘子,怎样分合理,来引入比的知识,这种贴近学生生活又有一定挑战性的实际问题,不仅能调动学生学习的积极性,还能培养学生解决实际问题的能力。并且这种学生熟悉的生活素材放入问题中,能使学生真正体会数学不是枯燥无味的,数学就在身边。
二、探究交流,解决问题
这个环节是本节课的重点,为了体现学生是学习的主人,这部分内容我设计了两个层次的教学:
第一层是明确如何按3:2分配。具体按照以下步骤进行。
(1)小组合作(用小棒代替橘子,实际操作)。
(2)记录分配的.过程。
(3)各小组汇报:自己的分法。
第二层是解决如何将具体个数按比例分配。这个层次的教学我是这样处理的:
出示题目:如果有140个橘子,按照3:2又应该怎样分?
(1)小组合作。
(2)交流、展示。
(3)比较不同的方法,找找他们的共同点。
3、小结:解决生活中的实际问题时,同学们要认真分析数量关系,可以选用多种方法解答。
(设计意图)放手让学生自己探索用多种方法解决问题。在师生讲评中发现新的解答方法,再着重分析这种解法的解题思路。这样在解题策略的开放过程中:即懂得用已掌握的方法解决新问题。又发现了新的解题方法;每位学生都体验着参与探索的乐趣。这些问题能满足学生的好奇心,满足他们的求知欲,激起他们学习数学的兴趣。这样“一个发现问题――提出问题――解决问题――发现新方法――运用新方法解决新问题”的程序,是学生数学“再创造”的过程。正如建构主义学习观认为“数学学习是一个以学生已有知识和经验为基础的主动建构过程”。在这样的探索学习中,使每位学生的数学认知结构有不同程度的拓展,每位学生都体验着探索成功的喜悦。
三、巩固练习,内化提升
由于,按比例分配在生活中的运用很广泛,所以在练习的设计上,主要通过有层次和有坡度的一组问题,让学生用今天所学的知识来解决这些生活中的问题,同时渗透思想教育,体现应用题的趣味性和德育价值。
具体的练习设计如下:
1、小红和小薇投篮数之比是3:5,小薇比小红多投了6个,小红投了多少个?
2、药粉和药水的比是1:30,如果药水有60千克,那么药粉有多少千克?
一种药水中药粉和水的质量比是1:50,用2千克药粉配置这样的药水,需要用水多少千克?
3、打一篇文章,小丽用了3小时,小红只用了2小时,问小丽和小红的速度之比是多少?
4、数学故事。(共同探讨方法)
阿凡提分马的故事,可能有的学生以前听过,可以让学生自己把故事讲出来。教学时,教师可以引导学生算出三个人分得的马:老大6匹,老二3匹,老三2匹。教师还可以进一步引导学生认识到12+14+16并不等于1。
课后的练习题是教材内容的表现形式,也是课堂教学教与学的反馈,一个好的问题会使学生产生困惑和好奇心,能迅速地把学生的注意力引入教学活动,使学生自觉、兴奋地投入到加深练习中,学习和探求新知识的教学活动中。
四、回顾整理,反思提升
学生谈收获,回顾如何用比的意义进行问题的解决。
《比和比的应用》数学教案 篇2
教学内容:九年义务教育六年制小学数学第十二册课本第111~112页例4。
教学目标:
1、知识与技能:理解和掌握求比一个数多(或少)几分之几的分数、百分数应用题基本数量关系与解题方法,比较熟练解答这类应用题,把它们的有关知识系统化。
2、过程与方法:使学生经历整理信息、利用信息的过程,发展学生的初步逻辑思维能力,能够灵活地运用这些知识正确解答稍复杂的分数、百分数应用题。
3、情感态度与价值观:培养学生认真审题和学会联系实际的良好学习习惯。让学生感受到学习数学的快乐。
教学重点:综合运用所学知识解答分数、百分数应用题。
教学准备:多媒体课件
教学过程:
一、课前预习
1、阅读课本十二册111页~112页的内容。再看看其他册课本有关分数、百分数的内容。
2、在课本中,用自己喜欢的符号标出预习中不懂的地方。
3、提出预习中自己存在的问题,在课本相应的地方写出来。
4、课前试练:111页“做一做”。
5、复习十一册中“分数、百分数应用题”相关的知识。
二、学生提出预习中问题
三、对学生预习中普遍存在的问题,教师给予讲解。
四、变式训练
教师精点111页“做一做”。
五、教师引讲
1、创设情境。
多媒体出示:学校举办的美术展览中,水彩画50幅;蜡笔画80幅。
2、学生提出问题
3、解决问题。
(1)蜡笔画比水彩画多几分之几?
(80—50)÷50=3/5
(2)水彩画比蜡笔画少几分之几?
(80—50)÷80=3/5
为什么用80作除数?而不是用50?呢?
4、归纳小结:
这是两道求一个数比另一个数多(或少)几分之几的应用题。它们都是用相差量去跟单位“1”的.量相比。相同点是这两个要比较的数量是已知的,不同点是两个问题中的哪个数量看作单位“1”不同,因此,在算式中用哪个数量作除数就不同。
所以,求一个数比另一个数多(或少)几分之几,用相差量除以单位“1”的量。
板书:找出单位“1”
5、改编练习题。
屏幕出示如下信息:
(1)根据“蜡笔画比水彩画多”这个条件,
如果已知水彩画有50幅,怎样求蜡笔画有多少幅?
如果已知蜡笔画有80幅,怎样求水彩画有多少幅?
(2)根据“水彩画比蜡笔画少”这个条件,
如果已知水彩画有50幅,怎样求蜡笔画有多少幅?
如果已知蜡笔画有80幅,怎样求水彩画有多少幅?
编出4道不同的分数应用题,并解答。
①蜡笔画比水彩画多,水彩画有50幅,蜡笔画有多少幅?
蜡笔画:50×(1+3/5)=80(幅)
②蜡笔画比水彩画多,蜡笔画有80幅,水彩画有多少幅?
水彩画:80÷(1+3/5)=50(幅)
③水彩画比蜡笔画少,水彩画有50幅,蜡笔画有多少幅?
蜡笔画:50÷(1+3/8)=80(幅)
④水彩画比蜡笔画少,蜡笔画有80幅,蜡笔画有多少幅?
水彩画:80×(1—3/8)=50(幅)
思考:两个问题一样吗?解答的方法它们有什么相同的地方和有不同地方?
6、总结。
单位“1”的量已知用乘法
单位“1”的量未知用除法
“多”用1+分率
“少”用1—分率
7、迁移深化。
教师:如果把以上几道应用题中的分数改为百分数,你会做吗?
小结:在一般情况下,解答分数(百分数)应用题,应先找出分率句中的单位“1”,再分析数量间的关系,然后根据实际情况,选择适当方法进行解答。
把以上几道应用题中的分数改为百分数,数量关系一样,只是题里两个数量之间的关系是用百分数表示。解题的思路与方法不变。
六、巩固练习
1、基本练习:练习二十二第2、3题。
2、深化练习:练习二十二第5题。
七、作业
练习二十二第1、4题。
板书:复习稍复杂的分数、百分数应用题
单位“1”的量已知用乘法
单位“1”的量未知用除法
“多”用1+分率
“少”用1—分率
《比和比的应用》数学教案 篇3
教学内容:教科书51页。 长方形和正方形的面积的应用。
教学目标:
1、通过练习进一步学会区分、比较周长和面积。
2、培养学生运用所学周长和面积的知识来解决生活问题的能力。
3、体验周长和面积的知识与现实生活的联系。
教学重难点:
学会区分、比较周长和面积。
教学过程:
一、通过复习旧知,导入本节练习。
二、练习
1、比较面积相等的长方形,它们的周长是否也相等。
这道题可以先让学生猜想,然后再通过计算来验证。从而得到:面积相等的长方形,它们的`周长不一定相等。还可以进行拓展训练,如果周长相等的长方形,它们的面积是否相等。
2、第5题
先让学生交流一下怎样包书皮,亲自动手包一包、试一试,然后再出示该题让学生思考。得到:长方形纸的宽应比书本的长长一些,长要比书本宽的2倍多些。从而判断用这张纸来包书皮是完全可以的。
3、“聪明小屋”
可以先求出一个长方形的周长和面积,再算6个长长方形的周长和面积。如果学生还有其他算法,只要有道理,教师都要加以肯定,予以表扬。周长36厘米,面积12平方厘米。在计算周长时,如果学生用(12+6)×2一定要让他说说是怎样想的,并要给与充分的肯定。
4、可以根据实际情况再加一些练习题。
课堂练习设计:
《比和比的应用》数学教案 篇4
【学习目标】
1、学习利用正、余弦函数的图像和性质解决一些简单应用;
2、比较单位圆和图像法研究三角函数的性质时各自的特点;
3、进一步熟悉正、余弦函数的最值、单调性、奇偶性、图像的对称性的应用;
【学习重点】
正、余弦函数的图像和性质的简单应用
【学习难点】
运用函数观点和数形结合思想研究函数性质
【学习过程】
一、预习自学(把握基础)
(温习课本第18页、28页、31页、32页关于正、余弦函数的图像和性质的内容,解决下列内容)
1、角α终边和单位圆交于点P(u,v)时,sinα= ;csα= ;
若P(x,)是角α终边上一点,则sinα= ; csα= ;
2、描点法画余弦曲线时的五个关键点是:
3、说说正、余弦函数的性质有哪些相同点和不同点?(画出表格比较)
二、合作探究(巩固深化,发展思维)
例1.书第24页A组第6题
例2.书第24页B组第4题
例3、书第35页B组第1题
三、达标检测(相信自我,收获成功)
1、函数=2csx, 412【导学案】正、余弦函数的图像和性质的'应用 的增区间为 ;减区间为 。
2、书第35页B组第2题(分csx<0和csx≥0两种情况化简解析式后画出图像)
(1)该函数图像为:
(2)定义域为 ;值域为 ;x= 时,
函数最大值为 ;最小正周期为 ;奇偶性为 ;
(3)该函数图像的对称性是 ;
增区间为 ;
减区间为 。
(4)函数在[-2π,2π]上的图像与直线=-1的交点个数是 。
四、学习体会
我的疑惑:
