五年级数学教案

欢迎阅读五年级数学教案(精选5篇),内容由多美网整理,希望对大家有所帮助。

五年级数学教案 篇1

教学目标:

1、理解并掌握比的基本性质,知道“最简单的整数比”,会根据比的基本性质将比化成最简单的整数比。

2、培养学生自主迁移、自主构建知识的能力。

3、搞清求比值和化简比的区别与联系,建立事物间相互联系的观念,对学生进行辨证唯物主义的思想教育。

教学重点:比的基本性质和化简比

教学难点:求比值和化简比的区别和联系

教具:小黑板

一、故事引入

引言:同学们知道猴子最爱吃桃子,下面就来看一看一个猴王分桃的故事。猴王管辖的猴群分为三个组,一组有4只猴分得3个桃,二组有8只猴分得6个桃,三组有12只猴,分得9个桃。请问猴王的分配公平吗?

让学生思考:每只猴分得几个桃?桃与猴的比怎样?比值是多少?

教师根据学生的回答板书:

3÷4 6÷8 9÷12 3:4 6:8 9:12

=3/4 =6/8 =9/12 =3/4 =6/8 =9/12

1、三个除法算式有什么关系?

2、三个分数的值相等吗?

3、三个比相等吗?(相等)为什么?

4、猴王的分配公平吗?(公平)为什么?

是啊!猴王的分配是公平的,由于它的公平才被众猴推为猴王。

三、探讨规律

师:上面的三个比什么变了?什么没变?

生:比的前后项变了,比值没变。

师:比的前后项是如何变化的?变化有没有一定的规律可循?下面我们来共同寻找、共同探讨。

1、首先让学生从左往右观察前后项的变化:前项3→6(3→9、6→9),后项4→8(4→12、8→12)分别是怎么变化的?让学生通过“观察→思考→讨论”后回答,教师根据学生的回答板书:

3:4=(3×2):(4×2)=6:8

3:4=(3×3):(4×3)=9:12

6:8=(6×1.5):(8×1.5)=9:12

上面的变化谁能用一句概括性的语言表达出来,让学生讨论回答,教师板书:

2、然后从右往左观察前后项又是如何变化的:

9:12=(9÷3):(12÷3)=3:4

6:8=(6÷2):(8÷2)=3:4

9:12=(9÷1.5):(12÷1.5)=6:8

3、讨论:上面同乘以或除以的“数”是不是任何数都可以?

4、揭示课题:这就是我们今天学习的“比的基本性质”。

5、尝试:

(1)、4:5的前项扩大2倍,要使比值不变,比的.后项应该( )

(2)、如果3:2的后项变成15,要使比值不变,比的前项应该为( )

四、运用规律

3:4、6:9、8:12这三个比中,比的前后项为互质数的是哪个比?(3:4),像这种前后项为互质数的比叫最简整数才(简称最件简比)。(板书)

1、化简比。

出示例1:把下面各比化成最简单的整数比。

(1)14:21 (2)1/6:2/9 (3)0.25:1.2 30:10

让学生讨论14:21如何化简?

2、小结化简比的方法。

师:谁来说说整数比如何化简,分数比如何化简,小数比如何化简?化简比的方法是什么?

3、比较化简比和求比值的异同。

强调:比值是一个数,化简比仍是一个比。(板书)

五、强化认识

1、判断:

①、1/2:1/4化简后得2( )

②、比的前项和后项同时乘以或除以相同的数,比值不变( )

③、两个数的比值是1/3,这两个数同时扩大5倍,它们的比值是1/3( )

④、圆周率表示一个圆的周长和直径的比 ( )

2、填空。(小黑板出示)

(1)、3÷4=()/()=()÷()=21:()

(2)、两个的比值是5/6,这两个数的最简比是()。

3、甲数是乙数的50%,用比的角度来描述这两个数的关系。

4、А、Б两圆的重叠部分是圆А的1/7,也是圆Б的1/5,求А、Б两圆的面积比

六、总结全课

今天我们学习了什么?应用它可以解决什么问题?化简比和求比值是否一样?

五年级数学教案 篇2

教学内容

教科书第60-61页例1、例2及相应的“练一练”,练习十一第1-3题

教学目标:

1、使学生经历探索分数基本性质的过程,初步理解分数的基本性质。

2、让学生能应用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。

3、让学生在观察、操作、思考和交流等活动中,培养分析、综合、抽象、概括的能力,体验数学学习的乐趣。

教学准备

圆形纸片、彩笔、各种卡片

教学过程:

一、创设情境,激趣导入

故事引入:猴王分饼

观察图片示意图,用分数表示每只猴分得饼的大小,这几个分数相等吗?出示阴影部分是1/2的图片?比较相等的几个分数有什么发现?(大小相等,分子分母在变化)

如果还有一只猴需要四块,猴王会怎样分呢,揭示课题

二、自主探究,发现规律

1、谈话:请同学们拿出课前准备好的一张正方形的纸,指出:这些正方形纸都一样大。

提问:你能先对折,并涂出它的吗?

学生折纸。涂色。交流后,追问:你能通过继续对折,找出和相等的其他分数吗?学生操作。组织交流。

1/2=2/41/2=4/81/2=8/16

2、发现规律

引导观察:请大家观察每个等式中的两个分数,它们的分子。分母是怎样变化的?学生观察、思考,完成课本上的填空,再在小组内交流。

a、先从左往右看,1/2是怎样变为与它相等的2/4的?

由1/2到4/8,分子、分母又是怎样变化的?

谁能用一句话说出这两个式子的变化规律?

b、再从右往左看

2/4是怎样变化成与之相等的'1/2的?

4/8又是怎样变成1/2的?

谁能用一句话说出这两个式子的变化规律?

综合以上两种变化情况,谁能用一句话概括出其中的规律?你觉得有什么要补充的吗?(不能同时乘或除以0)为什么?

3、沟通联系

谈话:你能根据分数的基本性质,再写出一组相等的分数?引导辨析:所写的分数是否相等?你是怎样想的?

提出要求:根据分数与除法的关系,你能用商不变的规律来说明分数的基本性质吗?

三、利用规律,解决问题

1、练一练的第1题。

2、练一练的第2题

3、练习十一第二题

四、课堂小结

这节课有哪些收获?

五年级数学教案 篇3

教学目标:

1、通过教学使学生理解和掌握分数的基本性质,能利用它改变分数的分子和分母,而使分数的大小不变。

2、培养学生的观察能力、动手操作能力和分析概括能力等。

3、让学生在学习过程中养成互相帮助、团结协作的良好品德。

教学重点:从相等的分数中看出变与不变,观察、发现、概括其中的规律。

教学难点:形成对分数基本性质的统一认知

教学准备:纸片、彩笔、各种卡片

教学过程:

一、导入新课。

出示例1种中的四幅图

提问:看图写出哪些分数?你是怎样想的?

学生回答后,教师导入新课。进一步研究分数方面的知识。

二、师生探究。

1、教学例1、

观察一下这个式子,4个分数有什么不同?你知道其中那几个分数是相等吗?

追问:你是怎样知道这几个分数相等的?和它们相等的分数还有没有?

2、教学例2

1、谈话:请同学们拿出课前准备好的一张正方形的纸,指出:这些正方形纸都一样大。提问:你能先对折,并涂出它的吗?

2、学生折纸。涂色。

交流后,追问:你能通过继续对折,找出和相等的其他分数吗?

3、学生操作。组织交流。

在学生交流时,注意让对折方法不同的学生充分展示,引导发现:只有对折次数相同,平均分的份数就相同,涂色部分就是相等的。

4、引导观察:请大家观察每个等式中的两个分数,它们的分子。分母是怎样变化的?

学生观察、思考,完成课本上的填空,再在小组内交流。

5、学生交流后,教师集中指导观察。

(1)先从左往右看,是怎样变为与它相等的的?

(分母乘2,分子乘2。)

根据分数的意义,”“表示把单位”1“平均分成2份,取其中的1份,而现在把单位”1“平均分成4份,也就是把原两份中的每一份又平均分成2份,所以现在平均分成了2×2=4(份),现在要得跟原来的同样多,必须取几份?[1×2=2(份)]

即原来把单位”1“平均分成2份,取1份,现在把平均分的份数和取的份数都扩大2倍,就得到。与的大小相等,分数值没变。

(2)由到,分子、分母又是怎样变化的?(把分平均的份数和取的份数都扩大了4倍。)

(3)谁能用一句话说出这两个式子的`变化规律?

再从右往左看

是怎样变化成与之相等的的?

又是怎样变成的?(把平均分的份数和取的份数都缩小了4倍。)

谁能用一句话说出这两个式子的变化规律?

6、综合以上两种变化情况,谁能用一句话概括出其中的规律?你觉得有什么要补充的吗?(不能同时乘或除以0)为什么?

7、这就是今天我们所学的”分数的基本性质“(板书课题,出示”分数的基本性质“)。

8、谈话:你能根据分数的基本性质,再写出一组相等的分数?

引导辨析:所写的分数是否相等?你是怎样想的?

提出要求:根据分数与除法的关系,你能用商不变的规律来说明分数的基本性质吗?

三、练习。

1、练一练的第1题。

2、练一练的第2题

3、练习十一第3题

五年级数学教案 篇4

教学目标

1、通过教学使学生理解和掌握分数的基本性质,能利用它改变分数的分子和分母,而使分数的大小不变。

2、培养学生的观察能力、动手操作能力和分析概括能力等。

教学重点:

从相等的分数中看出变与不变,观察、发现、概括其中的规律。

教学难点:形成对分数基本性质的统一认知

教学准备:圆形纸片、彩笔、各种卡片

一、导入新课

出示例1种中的四幅图

提问:看图写出哪些分数?你是怎样想的?

学生回答后,教师导入新课。进一步研究分数方面的知识。

二、发现概括

1、教学例1、

观察一下这个式子,4个分数有什么不同?你知道其中那几个分数是相等吗?板书:==

追问:你是怎样知道这几个分数相等的?和它们相等的分数还有没有?

2、教学例2

谈话:请同学们拿出课前准备好的一张正方形的纸,指出:这些正方形纸都一样大。提问:你能先对折,并涂出它的吗?

学生折纸。涂色。

交流后,追问:你能通过继续对折,找出和相等的其他分数吗?

学生操作。组织交流。

在学生交流时,注意让对折方法不同的学生充分展示,引导发现:只有

对折次数相同,平均分的份数就相同,涂色部分就是相等的。

三、沟通联系

引导观察:请大家观察每个等式中的两个分数,它们的分子。分母是怎样变化的?

学生观察、思考,完成课本上的填空,再在小组内交流。

学生交流后,教师集中指导观察。

先从左往右看,是怎样变为与它相等的的?

(分母乘2,分子乘2。)

根据分数的意义,”“表示把单位”1“平均分成2份,取其中的1份,而现在把单位”1“平均分成4份,也就是把原两份中的每一份又平均分成2份,所以现在平均分成了2×2=4(份),现在要得跟原来的同样多,必须取几份?[1×2=2(份)]==

即原来把单位”1“平均分成2份,取1份,现在把平均分的份数和取的份数都扩大2倍,就得到。与的大小相等,分数值没变。

(2)由到,分子、分母又是怎样变化的?(把平均分的份数和取的份数都扩大了4倍。)==

(3)谁能用一句话说出这两个式子的变化规律?

再从右往左看

是怎样变化成与之相等的的?==

又是怎样变成的?(把平均分的份数和取的份数都缩小了4倍。)==

谁能用一句话说出这两个式子的变化规律?

综合以上两种变化情况,谁能用一句话概括出其中的规律?你觉得有什么要补充的`吗?(不能同时乘或除以0)为什么?

这就是今天我们所学的”分数的基本性质“(板书课题,出示”分数的基本性质“)。

谈话:你能根据分数的基本性质,再写出一组相等的分数?

引导辨析:所写的分数是否相等?你是怎样想的?

提出要求:根据分数与除法的关系,你能用商不变的规律来说明分数的基本性质吗?

四、巩固练习

练一练的第1题。

练一练的第2题

啄木鸟诊所。(请说出理由)

分数的分子和分母同时乘或者除以相同的数,分数的大小不变。()

分数的分子和分母同时乘或者除以一个数(零除外),分数的大小不变。()

分数的分子和分母同时乘或者除以相同的数(零除外),分数的大小不变。()

小结:从判断题中我们可以看出,分数的基本性质要注意什么?学到这儿,大家想一想,我们以前学过的什么性质跟分数的基本性质类似?谁能用整数除法中商不变的性质来说明分数的基本性质?

五、课堂总结

这节课你学到了什么?什么是分数的基本性质?你是怎样理解的?

课堂作业

六、练习十一第3题

五年级数学教案 篇5

教学目标

(1)使学生理解、掌握分数的基本性质。

(2)学生把一个分数化成用指定的分母(分子)做分母(分子),而大小不变的分数,为学习约分和通分打下基础。

教学重点、难点

重点、难点:理解、掌握分数的基本性质。

教具、学具准备

教学过程

备注

一、复习

1、说出3/4所表示的意义。

2、说出下面各式的商,并说出是根据什么知识?(根据商不变的性质)

150÷50=3

(150×2)÷(50×2)=

(150÷2)÷(50÷2)=

(150×5)÷(50×5)=

(150÷5)÷(50÷5)=

二、引入新课

我们学习了商不变性质,又掌握了分数与除法的关系。那么分数有没有类似整数除法的性质呢?今天我们来研究“分数的基本性质”。(板书课题)

三、教学新课

1、教学例1,比较3/4、6/8和9/1的大小。

(1)折一折

用同样大小的三张纸条,分别折出3/4、6/8和9/12。

(2)比一比。

比较3/4、6/8和9/12这三个分数的大小。从折纸和课本图中可看出:3/4=6/8=9/12。

9/12→6/8→3/4,分子、分母发生了怎样的变化?

9/12=9÷3/12÷3=3/4,6/8=6÷2/8÷2=3/4

你从上面的计算中发现了什么?

(4)联系分数与除法的关系、商不变性质,怎样证明这几个分数的大小不变?

3/4=3÷4=(3×2)÷(4×2)=6/8

3/4=3÷4=(3×3)÷(4×3)=9/12

6/8=6÷8=(6÷2)÷(8÷2)=3/4

9/12=9÷12=(9÷3)÷(12÷3)3/4

你发现了什么?

教学过程

备注

(5)议论。

3/4的分母和分子都乘以或者都除以0,会得到怎样的结果?分数的大小会变吗?

0乘以任何数都得0,如果分数的分子和分母都乘以0,分子、分母都得0,但分母不能是0。因为0不能做除数,所以分数的分子、分母不能除以0。因此,分数的分子、分母都乘以或者除以相同的数时,0必须除外。

(6)师生共同归纳分数的基本性质(见课本)。

(7)尝试练习。

“练一练”第1题,“把下列分数的变化过程写完整。”

1/6=()/()3/()4/7=()/()=()3/5

8/24=()/()2/()25/60()/()=()/12

第2题,在下面括号里填上适当的数。

3/2=()/9,5/15=()/3,8/12=()/6,3/5=()/207/9=()21/()12/60=(),7/8=35/(),4/36=2/()

2、教学例2。

(1)把1/3和16/24分别化成分母是6,而大小不变的分数。

A、启发学生思考:这道题的要求是什么?分母变了,分数大小怎样才能不变?这样做的'根据是什么?

B、学生演算:1/3=1×2/3×2=2/6

16/24=16/4/24÷4=4/6

(2)试一试,把5/30和4/28分别化成分子是1的分数。

5/30=5÷5/30÷5=1/6,4/28=4÷4/28÷4=1/7

四、巩固练习

1、把下面的分数化成分母是60,而大小的分数。

(“练一练”第3题)

2/3、1/5、11/12、4/15

2、把下面的分数化成分子是1,而大小不变的分数。(第4题)

4/12、7/28、9/45、17/513

3、在下面分数中找出的分数,用线连起来。

1/2、8/20、4/12、2/5、10/20、13/39

五、课堂总结(略)

六、作业《作业本》

分数的基本性质是分数知识的重点。教学中充分利用图形,让学生直观地感知到分子、分母变了,但分数所表示的大小没有变,再通过研究分子、分母的变化规律,从而归纳出分数的基本性质。此外,要把分数的基本性质和以前学过的商不变性质联系起来了,加深对性质的理解。

大家都在看