《分数除以整数》教案设计

欢迎阅读《分数除以整数》教案设计(精选4篇),内容由多美网整理,希望对大家有所帮助。

《分数除以整数》教案设计 篇1

《分数除以整数》教案设计(精选10篇)

作为一无名无私奉献的教育工作者,往往需要进行教案编写工作,教案是保证教学取得成功、提高教学质量的基本条件。教案应该怎么写才好呢?下面是小编精心整理的《分数除以整数》教案设计,仅供参考,大家一起来看看吧。

《分数除以整数》教案设计 篇2

教学目标

1、通过例2的学习,学生能够理解整数除以分数计算法则的推导过程,引导学生正确地总结出计算法则。

2、能运用法则正确地进行计算。

3、培养学生观察、比较、分析的能力和语言表达能力,培养学生善于抓住事物本质的能力和思维方式。

教学重点

整数除以分数计算法则的推导过程。

教学难点

如何区别、统一分数除以整数、整数除以分数两个计算法则。

教学过程设计

(一)复习旧知

1、说出下面各题的倒数。(投影出示)

2、把算式补充完整。(投影出示)

问:分数除以整数的法则是什么?谁不变?谁变?

生:被除数不变,除号变乘号,除数变成它的倒数。(法则的本质)

问:分数除以整数是把谁变成它的倒数了?为什么?

生:把整数变成它的倒数了,因为整数处在除数的位置。

师:我们上节课学习了分数除以整数的计算法则。这节课我们来学习整数除以分数的计算法则。看谁最善于思考、分析,能正确的总结出计算法则。(板书:整数除以分数)

(二)新授教学

1、一辆汽车2小时行驶90千米。1小时行驶多少千米?

问:

①谁会列式计算?

板书: 02=45(千米)

②根据什么这样列式?

生:根据路程时间=速度。

问:要求1小时行驶多少千米就是求什么?

生:求汽车的速度。

问:怎样列式?为什么这样列式?

怎样进行计算呢?我们认真分析一下题意。画出线段图帮助我们寻找解题的方法。

师:根据你们说的老师画图。用一条线段的长表示1小时,把它平

问:怎么求?为什么这样求?

(2)要求1小时行多少千米,怎么求?

算式变化形式:

根据上面的推导过程可得出:

这两个算式相等吗?

我们把这道题完成。

答:汽车1小时行驶45千米。

(3)观察算式:谁没变?谁变了?怎么变的?

讨论:整数除以分数的计算法则是什么?

谁能说一说?

板书:整数除以分数等于整数乘以这个分数的倒数。

同桌互相说一说。

谁愿意给大家说一说?

(4)根据我们总结出的法则,同学们试做下面两道题,看谁做得又对又快。

订正,错的说错在哪里,并改正过程。

(三)巩固练习

1、投影出示。

(1)分数除以整数(0除外)等于分数乘以整数的倒数。

(2)整数除以分数,等于整数乘以分数的倒数。

问:第一个法则整数后面为什么要加上0除外而第二个整数后面就不加了呢?

生:第一个法则整数是处在除数的'位置,除数不能为0,所以必须加上0除外;第二个法则中整数处在被除数的位置,可以是0,因此不必加上0除外了。

问:你看这两个法则一会儿变成乘以这个整数的倒数,一会儿变成乘以这个分数的倒数,把我们都弄糊涂了。你有什么办法记清这两个计算法则吗?请把你的好方法讲给你周围的同学听。看谁的方法最好。

问:这两个法则的共同之处在哪儿?谁愿意把你的方法讲给全班同学听?

生:这两个计算法则虽然叙述的不一样,但它们都是被除数不变,除号变乘号,除数变成它的倒数。这样记就不会记错了。

2、把下面各题补充完整。

3、计算。在本上写过程,得数填在书上。

订正,指名把过程写在投影片上。

错的同学说明错因。

4、判断。对的举,错的举,并说明理由。

师:同学们的思维非常敏捷,语言表达能力也很强。同学们对每一道题都是认真观察、思考,这样我们就能避免出现很多不该出的错误。

(四)课堂总结

这节课我们学习了什么内容?整数除以分数的计算法则是什么?还有什么问题?

(五)作业

课本第36页第1,3,4题。

课堂教学设计说明

本节课的内容是整数除以分数的计算法则。这节课有两个难点:

第一是理解整数除以分数的计算法则的推导过程。为了突破这一难点,采用了把例2的条件和问题分别解剖加以分析的方法,引导学生根助学生理解算理,效果很好。

第二是分数除以整数,整数除以分数的计算法则的应用。这一部分内容学生容易产生混乱。为了突破这一难点,教师要调动学生的思维,激发他们的兴趣,使学生抓住了一不变二变这一本质。在练习中教师设计了一组对比练习。加深学生对法则的理解。

《分数除以整数》教案设计 篇3

本课题教时数:本教时为第2教时备课日期9月9日

教学目标

1、使学生理解整数除法分数的计算方法,并能正确地进行计算。

2、培养学生分析、推理和概括等思维能力。

教学重难点

整数除以分数的计算方法。

教学准备

教学过程设计

教学内容

师生活动

备注

一、复习旧知

二、教学新课

一、 巩固练习

四、小结。

五、作业

1、口算

3/431/542/766/112

分数除以整数通常是怎样计算的?

2、复习第(1)题

学生口答算式与结果。

这一题已知什么数量,要求什么数量?按怎样的数量关系求?

出示数量关系式:速度=路程时间

3、口答填空

3/10小时是()个1/10小时。

1小时是()个1/10小时。

4、引入新课

1、教学例2

这一题已知什么数量?要求什么数量/根据数量关系式怎样列式?

(183/10)

画出一条线段,并提问:如果把这条线段看做1小时行的千米数,怎样来表示3/10小时行的千米数?

根据学生的回答把这条线段平均分成10份,其中的3份用颜色线画出。

师边述说边画线段。

问:从图伤看,3/10小时行驶18千米,就是几个1/10小时行18千米?求1小时行多少千米。就是求几个1/10小时行多少千米?

要求10个1/10小时行多少千米。先要求出什么?图上哪一段表示1/10小时行的路程?

根据回答把线段图补充完整。

讨论:按这样来想,你认为第一步求什么?怎样求?

(1)1/10小时行的千米数是:183

为什么要用183?183能不能转化成用乘法来计算?

讨论:1/10小时行的千米数已经用式子表示出来了,你觉得第二步可以求什么?怎样求?

(2)1小时行的千米数是:181/310

(3)为什么要用181/3的积再乘10?根据乘法结合律,181/310还可以怎样乘?

问:183/10求出的是1小时行的千米数,1810/3也表示1小时行的千米数,那么183/10之间有怎样的关系?

从上面的推想过程看出,183/10转化成什么样的计算了?

比较这个等式里的算式,在等式两边,什么没有变?什么变了?是怎样变的?

2、小结。

1、练一练1

2、练一练2整数除以分数是怎样计算的?

3、练习八2整数除以分数和整数乘分数在计算时有什么不同?

4、练习八3

分组练习

做完后问:每一组的两道题有什么不同地方?计算时有什么共同的'地方?

说一说在整数除以分数时,要乘哪个数的倒数,在分数除以整数时,要乘哪个数的倒数。

练习八、1、4、5

181/310

=18(1/310)

=1810/3

课后感受

此节课的教法与前一节类似,更多的在于在学生昨天学会分析方法的前提下更多的放手让学生自己去探索规律、寻求解题方法。

《分数除以整数》教案设计 篇4

教学目标和要求

1、在涂一涂、算一算等活动中,探索并理解分数除法的意义。

2、探索并掌握分数除以整数的计算方法,并能正确计算。

3、能够运用分数除以整数解决简单的实际问题。

教学重点

分数除以整数的计算方法。

教学难点

分数除以整数的计算方法

教学准备

教学时数

1课时

教学过程

一、涂一涂,算一算

1、把一张纸的4/7平均分成2份,每份是这张纸的几分之几?

2、把一张纸的4/7平均分成3份,每份是这张纸的几分之几?

(1)第1题让学生可以先用画图、分数的意义等方法解决这个问题,然后根据除法的意义列出算式4/7÷2。在画图、理解分数的意义的基础上,生得出4/7÷2=2/7。因此,学生可能会得到“分母不变,被除数的分子除以除数得到商的分子”。

(2)鼓励学生探索第2题,联系分数乘法的`意义,说明把4/7平均分3份,也就是求4/7的1/3,从而理解其基本算理。让学生在第1题的基础上来引导学生发现此时被除数的分子不能被除数整除,从而总结出分数除以整数的一般方法,即用分数乘以除数的倒数。

二、填一填,想一想

1、变换探索的角度,呈现三组算式,让学生实际运用,再次验证一个分数除以整数的意义和算理。2

2、师导学生根据前面的三个活动,总结算法。3,3, 让学生先列举出分数除法算式,并利用手中的学具具体地分一分,涂一涂,借助图形语言进行理解。

三、试一试

练习分数除以整数的计算方法,沟通起分数除法与分数乘法的联系。

四、练一练

第26页第2,3题,让学生独立解决。

教学内容(课题)

大家都在看