初中数学说课稿

欢迎阅读初中数学说课稿(精选4篇),内容由多美网整理,希望对大家有所帮助。

初中数学说课稿 篇1

一、教学目标

1. 知识与技能目标:通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

2. 过程与方法目标:激发学生参与整个课堂教学活动的学习兴趣, 培养学生的分析、观察和概括能力,发展学生的空间观念。

3. 情感态度与价值观目标:渗透转化的数学思想和极限思想。

二、教学重点

正确计算圆的面积

三、教学难点

圆面积公式的推导

四、教具准备

多媒体课件,圆片

五、教学设计

(一)复习旧知,导入新课

1. 前面我们学习了圆、圆的周长。如果圆的半径用r表示,周长怎样表示?( 2πr)周长的一半怎样表示?(πr)

2. 课件:出示一块圆形的桌布。如果要给这块桌布的边缝上花边,是求什么?(圆形桌布的周长)

3.课件:出示一块圆形的镜框。如果要镜框配一块玻璃,至少需要多大?是求什么?(圆的面积) 谁能指出这个圆的面积?谁能概括一下什么是圆的面积?请同学们用手摸出学具圆的面积。

4. 提问:如果圆的半径是2分米,你能猜猜这块玻璃到底有多大?(同学们纷纷地猜测,有的学生可能说这个圆面小于所在的正方形面积)

这块圆形玻璃有多大,就是要求圆形的面积,这节课我们一起来研究怎样计算圆的面积。(板书课题:圆的面积)

(二)动手操作,探索新知

1. 回忆平行四边形、三角形、梯形面积计算公式推导过程。

(1)以前我们学习了平行四边形、三角形和梯形的面积计算公式。请同学们回想一下,这些图形的面积计算公式是怎样推导出来的?(学生回答,师用课件演示)

(2)通过回忆这三种平面图形面积计算公式的推导,你发现了什么?(发现这三种平面图形都是转化为学过的图形来推导出它们的面积计算公式)

(3)能不能把圆转化为学过的图形来推导出它的面积计算公式呢?

那么同学们想一想,圆可能转化为什么平面图形来计算呢?

2. 推导圆面积的计算公式。

(1)拿出已准备好的学具,说说你把圆剪拼成了什么图形?

(2)学生小组讨论。

看拼成的长方形与圆有什么联系?

学生汇报讨论结果。教师评价。

(3)课件演示:请看大屏幕,把圆分成16等份,拼成了近似平行四边形,再分成32等份,拼成近似的平行四边形,再分成64等份,拼成近似长方形,你发现什么?(如果分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形)

(4)你能根据长方形的面积计算公式推导出圆的面积计算公式吗?小组讨论一下。

生边答师边演示课件。

生答:因为拼成的长方形的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于半径。

因为长方形的面积=长×宽

所以圆的面积=周长的一半×半径

S=πr × r

S=πr2

师小结公式 S=πr2,让学生小组内说说圆的.面积是怎样推导出来的?

(5)读公式并理解记忆。

(6)要求圆的面积必须知道什么?(半径)

3. 利用公式计算。

(1)用新的方法算一算:刚才的玻璃到底有多大?看谁刚才猜得较接近。(学生计算并汇报)

(2)出示例3,学生尝试练习,反馈评价。

提问:如果这道题告诉的不是圆的半径,而是直径,该怎样解答?不计算,谁知道结果是多少吗?

(三)运用新知,解决问题

1. 求下面各圆的面积,只列式不计算。(CAI课件出示)

2. 测量一个圆形实物的直径,计算它的周长及面积。

3. 课件演示: 用一根绳子把羊栓在木桩上,演示羊边吃草边走的情景。(生看完提问题并计算)(羊吃到草的最大面积即最大圆面积是多少?)

(四)全课小结

这节课你自己运用了什么方法,学到了哪些知识?师生共同回顾。

(五)布置作业

1. 第97页的第3题和第4题。

2.找出身边的圆,同桌合作量一量半径,算一算面积(完成实验报告单)

测量物 直径(厘米) 半径(厘米) 面积(平方厘米)

六、板书设计:

圆的面积

长方形的面积=长×宽

圆的面积=周长的一半×半径

S=πr×r

S=πr2

初中数学说课稿 篇2

写说课稿一定要有正确的思路,下面一起去看看小编为你整理的初中数学万能说课稿吧,希望对大家有帮助!

一、说教材

用因式分解法求解一元二次方程是北师大版九年级上册第二章第四节内容,是中学数学的主要内容之一,在初中数学中占有重要地位。我们从知识的发展来看,学生通过一元二次方程的学习,可以对已学过实数、一元一次方程、整式、二次根式等知识加以巩固,同时一元二次方程又是今后学习可化为一元二次方程的分式方程、二次函数等知识打下良好基础。

二、说学情

任何一个教学过程都是以传授知识、培养能力和激发兴趣为目的的。中学生有强烈的好奇心和求知欲,当他们在解决实际问题时,发现要解的方程不再是以前所学过的一元一次方程或是可化为一元一次方程的其他方程时,他们自然会想进一步研究和探索解方程的配方法问题。而从学生的认知结构上来看,前面我们已经系统的研究了完全平方公式,二次根式,用配方法公式法后,这就为我们继续研究用因式分解法解一元二次方程奠定了基础。

三、说教学目标

【知识与技能】

掌握应用因式分解的方法,会正确求一元二次方程的解。

【过程与方法】

通过利用因式分解法将一元二次方程转化成两个一元一次方程的过程,体会“等价转化”“降次”的数学思想方法。

【情感态度与价值观】

通过探讨一元二次方程的解法,体会“降次”化归的思想,逐步养成主动探究的精神与积极参与的意识。

四、说教学重难点

【重点】

运用因式分解法求解一元二次方程。

【难点】

发现与理解分解因式的方法。

五、说教法、学法

本节课我主要采用启发式、类比法、探究式的教学方法。教学中力求体现“类比---探究-----归纳”的模式。有计划的逐步展示知识的产生过程,渗透数学思想方法。由于学生配平方的能力有限,所以,本节课借助多媒体辅助教学,指导学生通过观察与演示,总结因式分解规律,从而突破难点。

同时学生经过自主探索和合作交流的学习过程,产生积极的`情感体验,进而创造性地解决问题,有效发挥学生的思维能力,发挥学生的自觉性、活动性和创造性。

六、说教学过程

(一)导入新课

因为数学来源与生活,所以以学生的实际生活背景为素材创设情景,易于被学生接受、感知。通过课件演示课本中的实例,并应用多媒体对其进行分析,充分显示多媒体演示中的生动性、灵活性,增强直观性;同时帮助学生从实际问题中提炼出数学问题,初步培养学生的空间概念和抽象能力。由因式分解从而激发学生的求知欲望,顺利地进入新课。

(二)探索新知

问题1:一个数的平方与这个数的3倍有可能相等吗?如果相等,这个数是几?你是怎样求出来的?

学生小组讨论,探究后,展示三种做法。

问题:小颖用的什么法?——公式法

小明的解法对吗?为什么?——违背了等式的性质,x可能是零。

小亮的解法对吗?其依据是什么——两个数相乘,如果积等于零,那么这两个数中至少有一个为零。

问题2:学生探讨哪种方法对,哪种方法错;错的原因在哪?你会用哪种方法简便]

师引导学生得出结论:

如果a·b=0,那么a=0或b=0

(如果两个因式的积为零,则至少有一个因式为零,反之,如果两个因式有一个等于零,它们的积也就等于零。)

“或”有下列三层含义

①a=0且b≠0 ②a≠0且b=0 ③a=0且b=0

问题3:

(1)什么样的一元二次方程可以用因式分解法来解?

(2)用因式分解法解一元二次方程,其关键是什么?

(3)用因式分解法解一元二次方程的理论依据是什么?

(4)用因式分解法解一元二方程,必须要先化成一般形式吗?

因式分解法:当一元二次方程的一边是0,而另一边易于分解成两个一次因式的乘积时,我们就可以用分解因式的方法求解。这种用分解因式解一元二次方程的方法称为因式分解法。

这是我会提示学生:1.用分解因式法的条件是:方程左边易于分解,而右边等于零;2.关键是熟练掌握因式分解的知识;3.理论依旧是“如果两个因式的积等于零,那么至少有一个因式等于零。”

(三)巩固提高

在这个环节,我遵循巩固与发展相结合的原则,先引导学生练习,练习如下:

用分解因式法解下列方程吗?

在学生做练习时,进行巡看,及时掌握学生的练习情况,以便进行有针对性的评讲。个别题目采取小组合作的方式对本课知识进行巩固,不仅调动学生学习的积极性、主动性,增强学生积极参与教学活动意识和集体荣誉感,而且还能培养学生的观察能力和判断能力。学生完成课本练习后,补充一道习题,目的是提升学生对因式分解法的理解。同时也起到了分层次教学的作用。

(四)小结作业

最后是小结环节,通过本节课的学习你学到了什么,有什么收获。整个过程让学生自己进行,以培养学生的归纳、概括的能力。考虑带学生在知识、技能、能力等方面的发展都不尽相同,因此,我分层次布置作业,作业分为必做、选做两类,以便同时兼顾到学有困难和学有余力的学生。

七、说板书设计

我的板书本着清晰、简洁、直观的原则,呈现知识的内在联系,板书如下:

初中数学说课稿 篇3

一、教材分析

本节内容是苏科版数学八年级上册第一章第一节第1课时,本节立足于学生已有的生活经验和初步的数学活动经历,从观察生活中的轴对称现象开始,从整体的角度认识轴对称的特征;同时与图形的三种运动(平移、翻折、旋转)之一的“翻折”有着不可分割的联系,通过对这一节课的学习,既可以让学生感受图形的三种基本运动中“翻折”在几何知识中的作用,又为学生后继学习对称变换、中心对称和中心对称图形及平行四边形的相关知识等做好充分准备;同时这一节也是联系数学与生活的桥梁。

二、教学目标:

根据上述教材分析,考虑到学生已有的认知结构和心理特征,制定如下教学目标:

1、通过具体实例理解轴对称与轴对称图形的概念;能够认识轴对称和轴对称图形,并能找出对称轴;知道轴对称与轴对称图形的区别和联系。

2、经历观察生活中的轴对称现象和轴对称图形,探索它们的共同特征的活动过程,发展学生的空间观念和抽象概括能力。

3、在欣赏现实生活中的轴对称图形之美时,体会轴对称在现实生活中的广泛运用和它的丰富的文化价值;激发学生学习欲望,主动参与数学学习活动。

三、教学重点、难点:

依据教学目标,我认为本节课的重点是:轴对称与轴对称图形概念的区别与简单运用。 难点是:轴对称与轴对称图形之间的联系和区别.

四、教法、学法

为突出重点、突破难点,使学生能达到本节设定的教学目标,本节课我将引导学生经历观察、操作等活动过程,在活动过程中给学生充分的自主探究交流的空间,让学生进行充分的讨论、交流、合作、大胆表述,让学生真正成为学习的主人。

五、教学过程:

根据以上分析,下面我具体谈一谈本节课的教学过程. 探究活动(一):轴对称图形

1、激趣导入、感受生活(用多媒体演示生活中的有关画面) 图片欣赏(课件):考考你的观察力,这一醒目的标题,激起学生的好胜心,让学生边观察边思考:这些图片有什么共同特征?这一设计遵循教学要贴近生活实际的原则,学生仔细观察后,能发现这些图形都是对称。然后,教师适时提出问题:这些图形是如何对称?怎样才能使对称的部分重合呢?让学生观察、猜想、探究、讨论,教师可以适当地引导,让学生发现:把一个图形的某一部分沿着一条直线翻折180度后能与这个图形另一部分完全重合。使学生感受到生活中处处有数学数学就在我们身边,激发学生学习数学的兴趣。

2、活动探究形成概念:实验探究:把一张纸对折剪出一个图案(折痕处不要完全剪断),再打开这张对折的纸,剪出一个美丽的图案,请同学模仿老师的方法试一试。在欣赏、感知轴对称的基础上,学生肯定急于了解这些图形到底美在哪里。因此我设置了剪纸活动,让学生通过动手实践来创造美,在操作中感知轴对称图形的概念。而后再对比上一活动中部分图案,互相交流发现它们的共同的特征“存在直线——将其折叠——互相重合”。从而合作归纳得出概念,教师板书概念。

3、联系实际举出几个轴对称图形实例,并说出对称轴(附课件)

学生根据自己的生活经验,说出符合条件的图形,让学生体会轴对称图形在生活中的广泛存在,生活中的许多轴对称图形,他们不但体现了一种对称美,还蕴涵一定的科学道理,你们知道吗?①表盘的对称保证了走时的均匀性②飞机的对称使飞机能够在空中保持平衡;③人眼睛的对称使人观看物体能够更加准确全面;④双耳的对称能使听到声音具有较强的立体感……

4、综合练习,发散思维: 这组习题的设计有图形、数学……挖掘了生活右多种图案,加强了学科间的渗透与学科间的整合,让学生在相互争论、补充、交流中寻找知识的答案,体会学习的乐趣。

探究活动(二):轴对称

1、动手操作,引入新知

将一张纸对折后,用针尖在纸上扎出如图所示的图案,观察所得图案。位于折痕两侧的部分有什么关系?再观察教材119页图14.1-3,看看每对图形有什么共同特征?每一个图案是由几个图形构成的?因为学生已经了解到轴对称图形的概念,他们可能会错误地认为两个图形成轴对称和轴对称图形都是对称,没有什么差别。所以先运用动手实践,进行剪纸,借助人的各种感官认识,突出两个图形成轴对称是指“两个图形重合”这一特点。按照“存在直线——将其折叠——两图形重合”这条主线,在老师的引导下,学生得出两个图形成轴对称、对称点的概念。教师板书概念。

2、巩固练习,应用提高(课件)对所学的知识加以理解和巩固

3、列举实例,展示才华 举出生活中成轴对称的例子,加深对轴对称的理解。

活动(三):归纳总结 观察下面两个图形,说说你的发现。 对比轴对称与轴对称图形:(列出表格,加深印象) 轴对称 轴对称 轴对称 轴对称图形 是两个 两个图形之间的关系 是一个 一个图形形本身具有的特性 对折后 两个图形完全重合 翻折后 与图形的另一半完全重合 区别:轴对称指的是“两个”图形之间的对称关系,而轴对称图形是指“一个”图形具有的对称性质。

联系:①都是用对折、翻折180°图形重合来定义的;

②两者可相互转化,如果把轴对称的`两个图形看成是一体的,那么这“一个”图形就是轴对称图形,反过来,如果把一个轴对称图形互相对称的两部分看成是两个图形,那么这“两个”图形是轴对称的。这里渗透整体与部分的辨证关系,进一步发展学生抽象思维能力。

活动(四):识别图形、感受对称美

(1)、欣赏图片,体会轴对称所营造的对称美。

(2)、在计算器显示的数字0至9中,有哪些是轴对称的?许多汉字都是轴对称图形,如:田、日、曰、中、申、王等等。各公司、企业的商标中有许多轴对称实例和轴对称图形,如联想,联合证券,湘财证券,中国工商银行,中国银行;各品牌汽车的车标中有许多都是轴对称图形,如奥迪,韩国现代,本田,富康,欧宝,宝马;矩形、菱形、正方形、等边三角形等都是轴对称图形;线段也是轴对称图形,线段的垂直平分线就是它的对称轴。

强调:图形的对称轴是直线,不是线段、射线,而是线段、射线所在的直线。比如学生容易认为角平分线是角的对称轴,等腰三角形底边上的高是它的对称轴,可以很好达到纠正错误的功效。其次掌握角、等腰三角形各有一条对称轴,长方形有两条,等边三角形有三条,正方形有四条对称轴,而圆形是最特殊的轴对称图形,有无数条对称轴,所以它的对称性应用最广泛。这样可以使学生运用图形的对称性解决今后一些相关问题。

活动(五):动手操作、积极实践、创造图形

(1)、在给出轴对称图形的一半的基础上,让学生在对称轴的另一边画出另一半,成为一个完整的轴对称图形。由简到难,层层第进。

(2)、让学生发挥自己的想象力和创造力,用自己的双手创造一个美丽的轴对称图形。

(这个部分的设计,具有开放性,能充分发挥学生的想象力和创造力、动手能力、使学生成为学习的真正主人,给了学生自我表现、自我创造的空间,有利于培养学生积极的学习态度和学数学的亲切感,也有利于培养学生对美的感受能力。)

(六):课堂小结

(1)、本节课学到了哪些知识?

(轴对称和轴对称图形的定义;轴对称图形的性质;我们所学的多边形中有哪些是轴对称图形;轴对称图形的应用。)

(2)、谈谈你对本节课学习的体会与困惑。

(七):作业设计

发挥你们的想象,利用本节所学的知识,为我们班设计一个班徽,要求设计的图案是轴对称图形或成轴对称,并有一定寓意。这是一道富有开放性、趣味性和挑战性的作业题,给学生提供发挥想象力和创造力的平台,使学生的活动由课内走向生活。

以上是我对本节课的见解,不足之处敬请各位评委谅解 ! 谢谢!

初中数学说课稿 篇4

一、教材分析:

(一) 教材的地位与作用

从知识结构上看,勾股定理揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,在现实生活中有着广泛的应用。

从同学们认知结构上看,它把形的特征转化成数量关系,架起了几何与代数之间的桥梁;

勾股定理又是对同学们进行爱国主义教育的良好素材,因此具有相当重要的地位和作用。

根据数学新课程标准以及八年级同学们的认知水平我确定如下学习目标:知识技能、数学思考、问题解决、情感态度。其中【情感态度】方面,以我国数学文化为主线,激发同学们热爱祖国悠久文化的情感。

(二)重点与难点

为变被动接受为主动探究,我确定本节课的重点为:勾股定理的探索过程。

限于八年级同学们的思维水平,我将面积法(拼图法)发现勾股定理确定为本节课的难点。 我将引导同学们动手实验突出重点,合作交流突破难点。

二、学情分析

初二同学们已具备一定的 分析,归纳的能力和运用数学的思想意识对于勾股定理的得出,需要同学们通过动手操作,在观察的基础上,大胆猜想数学结论。但同学们在这一方面的可预见性和耐挫折能力并不是很成熟,从而形成困难。

三、教学与学法分析

教学方法

叶圣陶说过"教师之为教,不在全盘授予,而在相机诱导。"因此教师利用几何直观提出问题,引导同学们由浅入深的探索,设计实验让同学们进行验证,感悟其中所蕴涵的思想方法。

学法指导

为把学习的主动权还给同学们,教师鼓励同学们采用动手实践,自主探索、合作交流的学习方法,让同学们亲自感知体验知识的形成过程。

四、教学过程

首先,情境导入 激问设疑

给出生活中的实际问题,调动同学们兴趣,启迪同学们思维,激发同学们创新热情和和情感体验。是同学们带着好奇心开始本节课的学习。

其次,自主探究,获取新知

勾股定理的探索过程是本节课的重点,依照数学知识的循序渐进、螺旋上升的原则,我设计如下三个活动。

1. 追溯历史 解密真相

让同学们欣赏传说故事:相传2500年前,毕达格拉斯在朋友家做客时,发现朋友家用砖铺成的地面中反映了直角三角形三边的某种数量关系。通过故事使同学们明白:科学家的伟大成就多数都是在看似平淡无奇的现象中发现和研究出来的;生活中处处有数学,我们应该学会观察、思考,将学习与生活紧密结合起来。

这样,一方面激发同学们的求知欲望,另一方面,也对同学们进行了学习方法指导和解决问题能力的培养。

2.动手操作----探求新知

通过对地板图形中的等腰直角三角形到一般直角三角形中三边关系的探究,让同学们体验由特殊到一般的探究过程,学习这种研究方法。

在这一过程中,同学们充分利用学具去尝试解决,力求让同学们自己探索,先在小组内交流,然后在全班交流,尽量学习更多的方法。

这里首先引导同学们观察图1、图2、图3,让同学们计算每个图中的三个正方形的面积,(注意:同学们可能有不同的方法,只要正确合理,各种方法都应给予肯定)。然后通过探究S1、S2、S3之间的关系,进而猜想、发现得出勾股定理,并用自己的语言表达,这样做不仅有利于同学们主动参与探索,感受学习的过程,培养同学们的语言表达能力,体会数形结合的.思想;也有利于突破难点,让同学们体会到观察、猜想、归纳的思路,让同学们的分析问题、解决问题的能力在无形中得到提高,这对以后的学习有帮助。

从上面低起点的问题入手,有利于同学们参与探索。同学们很容易发现,在等腰三角形中存在如下关系。巧妙的将面积之间的关系转化为边长之间的关系,体现了转化的思想。观察发现虽然直观,但面积计算更具说服力。将图形转化为边在格线上的图形,以便于计算图形面积,体现了数形结合的思想。同学们会想到用"数格子"的方法,这种方法虽然简单易行,但对于下一步探索一般直角三角形并不适用,具有局限性。因此我引导同学们利用"割"和"补"的方法求正方形C的面积,为下一步探索复杂图形的面积做铺垫。

3、自己动手,拼出弦图

让同学们拿出了提前准备好的四个全等的边长为a、b、c的直角三角形进行拼图,小组活动,拼出自己喜爱的图形,但有一个前提是所拼出的图形必须能够用等积法证明勾股定理。此时已经是把课堂全部还给了同学们,让他们在数学的海洋中驰骋,提供这种学习方式就是为了让孩子们更加开阔,更加自主,更方便于他们到广阔的海洋中去寻找宝藏,同学们们拼得很好,并且都给出了正确的证明,在黑板上尽情地展示了一番。

突破等腰直角三角形的束缚,探索在一般情况下的直角三角形是否也存在这一结论呢?体现了"从特殊到一般"的认知规律。在求正方形C的面积时,同学们将展示"割"的方法, "补"的方法,有的同学们可能会发现平移的方法,旋转的方法,对于这两种新方法教师应给于表扬,肯定同学们的研究成果,培养同学们的类比、迁移以及探索问题的能力。

以上三个环节层层深入步步引导,同学们归纳得到命题,从而培养同学们的合情推理能力以及语言表达能力。

感性认识未必是正确的,推理验证证实我们的猜想。

合作交流,讲述论证

教材中直接给出"赵爽弦图"的证法对同学们的思维是一种禁锢,我创新使用教材,利用拼图活动解放同学们的大脑,让同学们发挥自己的聪明才智证明勾股定理。这是教学的难点也是重点,给同学们充分的自主探索的时间与空间,让同学们的思维在相互讨论中碰撞、在相互学习中完善。同时我深入到同学们中间,观察同学们探究方法接受同学们的质疑,对于不同的拼图方案给予肯定。从而体现出"同学们是学习的主体,教师是组织者、引导者与合作者"这一教学理念。同学们会发现两种证明方案。

方案1为赵爽弦图,同学们讲解论证过程,再现古代数学家的探索方法。方案2为同学们自己探索的结果,论证之巧较方案1有异曲同工之妙。整个探索过程,让同学们经历由表面到本质,由合情推理到演绎推理的发掘过程,体会数学的严谨性。对比"古"、"今"两种证法,让同学们体会"吹尽黄沙始到金"的喜悦,感受到"青出于蓝而胜于蓝"的自豪感。教师对"勾、股、弦"的含义以及古今中外对勾股定理的研究做一个介绍,使同学们感受数学文化,培养民族自豪感和爱国主义精神。增强了同学们学习数学的兴趣和信心。

我按照"理解—掌握—运用"的梯度设计了如下四组习题。

(1) 体会新知,初步运用(2)对应难点,巩固所学;(3)考查重点,深化新知;(4)解决问题,感受应用

最后、温故反思 任务后延

在课堂接近尾声时,我鼓励同学们从"四基"的要求对本节课进行小结。进而总结出一个定理、二个方案、三种思想、四种经验。

然后布置作业,分层作业体现了教育面向全体同学们的理念。

五、板书设计

板书勾股定理,进而给出字母表示,培养同学们的符号意识。

六、学习评价

本课意在创设和谐的乐学气氛,始终面向全体同学们,"以同学们的发展为本"的教育理念,课堂教学充分体现同学们的主体性,给同学们留下最大化的思维空间注重数学思想方法的渗透,从一般到特殊从特殊回归到一般的数学思想方法。重视数学式教育,激发同学们的爱国情操,用数学知识解决生活中的实际问题,在这个过程中,很多时候需要老师帮助同学们去理解和转化,而更多时候需要同学们自己去探索,尝试,得出正确结论。

大家都在看