求平均数教案

欢迎阅读求平均数教案(精选5篇),内容由多美网整理,希望对大家有所帮助。

求平均数教案 篇1

一、教学目标

(一)知识与技能

理解平均数的意义,初步学会简单的求平均数的方法。

(二)过程与方法

学生经历用平均数知识解决简单生活问题的过程,积累分析和处理数据方法,发展统计观念。初步感知移多补少对应等数学思想。

(三)情感态度和价值观

感受平均数在生活中的应用价值,体验学习数学解决实际问题的乐趣。

二、教学重难点

教学重点:理解平均数的含义,掌握求平均数的方法。

教学难点:借助移多补少的方法理解平均数的意义。

三、教学准备

课件、实物投影。

四、教学过程

(一)创设情境

1.谈话引入。

以幻灯片形式出示教师家的书橱。

现在,我的书架上层有12本书,下层有10本书,我想请同学们帮忙,重新整理一下,使每层书架上的书一样多。

2.感知课题。

(1)学生思考,想象移动的过程。

(2)教师操作并提问:现在每层都有11本书了,这个11是它们的什么数?

(3)教师:像这样把几个不同的数,通过移多补少的方法,得到相同的数,就是这几个数的平均数。

今天,我们就来认识一下平均数这个新朋友,好吗?

(板书:平均数)

(二)探究新知

1.引发质疑,探索新知。

教师:看到这个课题,你想通过这节课学习到哪些知识?

预设:

(1)平均数是一个什么数?

(2)怎样计算平均数?

(3)平均数在生活中有什么用?

2.理解含义,探求方法。

出示例1,为了保护环境,学校四年级1班的一组同学利用业余时间收集矿泉水瓶,做环保小卫士。

仔细观察统计图,从图中知道了什么?你能根据统计图提出什么问题?

预设:

(1)小红比小兰多收集多少个瓶子?

(2)小明再给小亮几瓶,他俩的.瓶子就一样多?

(3)他们平均每人收集了多少个瓶子?

你怎样理解平均每人收集了多少个瓶子?你怎样才能让他们的瓶子数量一样多呢?

学生汇报交流。

小结1:求平均数实际就是把多的补给少的,在数学上叫做移多补少。

小结2:求平均数也可以采用计算的方法,用他们一共收集的矿泉水瓶个数总和除以人数,得到平均每人收集多少个。

(14+12+11+15)4=13(个)。

【设计意图】注重让学生自主探索、合作交流,通过解决平均每人收集多少个矿泉水瓶的问题,引导学生思考并理解求平均数的方法,掌握移多补少以及先求和再平均分的数学方法。

3.理解平均数的含义。

教师:刚才我们通过移多补少和计算,求出平均每人收集了13个矿泉水瓶,看这个平均数13,它是不是每个人真正收集的矿泉水瓶数量?

引导学生体会13不是每个人真正收集的矿泉水瓶数量,而是4个人的总体水平。

小结:平均收集13个矿泉水瓶,不是每个人真正收集的数量,是一个虚拟的数,反映了这组收集矿泉水瓶数的情况。

教师:生活中你还在哪些地方或什么事情中遇到或用到过平均数吗?举例说一说。

预设:

(1)本周平均最高气温6摄氏度。

(2)三年级学生的平均身高是140厘米。

(3)四年级2班五位同学平均每人捐10本图书。

(4)李莉同学平均每天上学路上花费15分钟。

【设计意图】初步理解平均数的意义,并在现实生活中寻找实例,感受数学源于生活。

(三)知识应用

1.判断。

(1)某小学全体同学向希望工程捐款,平均每人捐款3元。那么,全校每个同学一定都捐了3元。

()

(2)学校排球队队员的平均身高是160厘米,有的队员身高会超过160厘米,有的队员身高不到160厘米。

()

(3)小明所在的1班学生平均身高1。4米,小强所在的2班平均身高1。5米。小明一定比小强矮。

()

【设计意图】让学生结合具体情境,进一步理解平均数的含义,初步感受平均数的特点:一组数据的平均数比数据中最大数小,比最小数大。

2.选择。

小明家平均每月用水()吨。

A.(16+24+36+27)365

B.(16+24+36+27)12

C.(16+24+36+27)4

【设计意图】通过解决平均用水量的问题,巩固所学知识,根据所求问题找准与总数相对应的份数。

(四)全课小结

今天你有什么收获?

再看看开始想解决的问题:(1)平均数是一个什么数?(2)怎样计算平均数?(3)平均数在生活中有什么用?现在能解决了吗?

《简单的数据事理和求平均数》

求平均数教案 篇2

师:(看着生2)你能给你的这种方法取个名字吗?

(由于平时有渗透过这种方法,生2很自然地说出是“移多补少”)

师板书:算术法 移多补少法

师小结:刚才生1和生2分别用算术法和移多补少法求出了第一组的平均数是83,那有谁求出第二组的平均数了?

(生摇头,大胆学生说:除不尽的)

师:(乘机)那你们有什么好办法?

生:用我们学过的“估算”

师:好,那你们试试吧!(指1名板演)

板书:(78+83+82+83)/4~81

师:从两组平均数83和81中,你知道了什么?

生:第一组平均数大,所以还是第一组总体水平好一些。

3、理解平均数的.意义

师:第一组的83表示什么?你怎么理解“83”这个数?

(引导学生明白:“83”是个“虚数”,第一组的83不表示每人真跳了83下,有可能小于83,有可能大于83,还有可能等于83。)

师:通过刚刚的情景,当人数不相等,比总数不公平时,是谁帮助了咱们?(平均数),那你想对“平均数”说什么心里话?

生(自由发言)生1:平均数,你真厉害,使不公平的事变公平了。

生2:平均数,因为有了你,世界上才会太平

4、沟通平均数与生活的联系。

师:在平时生活中,你们见过平均数吗?

生举例:统计考试成绩需要平均数;平均每月用电量;节目比赛打分用到平均数。

(三)、联系生活,拓展应用

1、多媒体呈现:下面是某县1999—20xx年家庭电脑拥有量的统计图。

图略:1999年350台,20xx年600台,20xx年1000台,20xx年1600台,20xx年2500台

(1) 求出这五年来,平均每年拥有电脑多少台?

(出现算术法和移多补少法两种方法)

(2) 估计一下,到20xx年这个县的家庭电脑拥有量是多少?为什么?

(3) 从图上你还知道些什么?

2、多媒体呈现一幅统计图,内容为:小刚家每个季度用水分别是16吨、24吨、36吨、27吨

师:请你帮他算一算平均每月用水多少吨?应该选择哪个算式?

(1)(16+24+36+27)/4

(2)(16+24+36+27)/12

(3)(16+24+36+27)/365

a、生举手表决

b、辩论交流得出正确答案(2)

c、师生小结:计算平均数时,得从问题出发去选择正确的总数和总份数后,再总数/总份数=平均数

(四)、总结评价,提高认识

师:通过这节课的学习,你有什么收获?

师:你觉得这些知识对你以后生活或学习有什么影响或作用?

板书设计

求平均数(算术法 移多补少法)

第一组:(82+86+81)/3=83 第二组:(78+83+82+83)/4~81

当人数不相等,比总数不公平时,我们就得看“平均数”。

“平均数”是个“虚数”(大于平均数 ;小于平均数 ; 等于平均数)“平均数”可用来预测未来发展趋势。

求平均数教案 篇3

教学要求

使学生进一步理解求平均数的意义,学会较复杂的求平均数的方法。

教学重点

学会较复杂的求平均数的方法。

教学用具

投影仪(片)

教学过程

一、创设情境

投影显示第13页的复习题,让学生思考并回答:

(1)这题要求的是什么?

(2)必须要知道什么?

(3)怎样列式解答?

计算的结果能说明什么问题?它有什么用?

思考:全班同学上美术课每个人都带了些“橡皮泥”做手工用,为了使大家都拥有有等量的“橡皮泥”,我们该用什么办法把我们手中的“橡皮泥”平均一下呢?

今天这节课我们将继续学习求平均数(板书课题)

二、探索研究

小组合作讨论:研究例1。

1、观察比较:例1与复习题有什么相同处与不同处?

2、思考并回答:

(1)这题求的是什么的平均数?

(2)必须要知道什么?

(3)你会解答这道题吗?

(先让学生分小组试着做一做,再选几名学生代表,讲一讲他们是怎样做的,老师将学生说的解题过程板书出来后集体订正)

①全班一共投中多少个?28+33+23=84(个)

②全班一共有多少人?10+11+9=30(人)

③全班平均每人投中多少个?84÷30=2.8(个)

列成综合算式是

(28+33+23)÷(10+11+9)=2.8(个)

答:全班平均每人投中2.8个。

小组合作学习:研究例2。

1、观察比较:例1与例2的条件与问题又有什么相同点和不同点?

2、思考并解答:你能联系例1的解题思路计算出这题的结果吗?

放手让学生尝试做一做,再讲一讲是怎样做的',老师将学生说的解题过程板书出来,使学生明白:条件与与问题不同,计算方法和步骤也就不同,最后集体订正。

①全班一共投中多少个?2.5×12+3×11+3.2×10=95(个)

②全班一共有多少人?12+11+10=33(人)

③全班平均每人投中多少个?95÷33≈2.9(个)

列成综合算式是:

(2.5×12+3×11+3.2×10)÷(12+11+10)

=95÷33

≈2.9(个)

答:全班平均每人投中2.9个。

三、课堂实践

做教材第14页的“做一做”

四、课堂

学生今天学习的内容。

五、课堂作业

1、练习三的第2题。

2、练习三的第1、3、4题

求平均数教案 篇4

教学目标

(一)进一步理解求平均数的意义,掌握较复杂的求平均数的方法。

(二)通过题目设计,对学生进行思想品德教育。

(三)培养学生灵活计算的能力和解决实际问题的能力。

教学重点和难点

求平均数的意义及较复杂的求平均数的方法。

较复杂的.求平均数的方法。

教学用具

教具:电脑软件、投影片。

学具:判断卡。

教学过程设计

(一)复习准备

1.口算。

①小明有12本书,小军有20本书,小明和小军平均每人有几本书?

②五(3)班做好事28件,五(4)班做好事36件,平均每个班做好事多少件?③五年级一班分成3组投篮球,第一组投中28个,第二组投中33个,第三组投中23个,平均每组投中多少个?

由学生自己解答(列式计算)针对第③题提问:

①说出这道题的问题是什么?

②求平均数必须知道什么条件?

③说一说你是怎样计算的?

板书:投中总个数÷组数。

(二)学习新课

1.出示例 1:

五年级一班分成3组投篮球,第一组10人,共投中28个;第二组11人,共投中33个;第三组9人,共投中23个。全班平均每人投中多少个?

读题后,学生分组讨论思考题。(投影片)

①例1和准备题③比较,题目有什么异同?(从条件和问题两方面考虑。)②要求全班平均每人投中多少个,必须先知道什么条件?

在学生回答基础上,板书:投中总个数÷全班总人数。

教师:投中总个数和全班总人数题目中给了吗?怎么办?

②投中总个数和全班总人数知道之后,怎样求全班平均每人投中多少个?

尝试自己列式,然后讨论订正。

板书:

(1)全班一共投中多少个?

28+33+23=84(个)

(2)全班一共有多少人?

10+11+9=30(人)

(3)全班平均每人投中多少个?

84÷30=2.8(个)

教师:综合算式怎样列?(学生试列式,再讨论订正。)

板书:(28+33+23)÷(10+11+9)=2.8(个)

答:全班平均每人投中2.8个。

教师:对比例1和准备题③你能发现解答方法有什么异同吗?为什么会出现这种不同的情况?

2.出示例2:(投影片)

下表是五年级二班3个组投中篮球情况统计表。全班平均每人投中多少个?(得数保留一位小数)

教师:例2和例1比较,有什么异同?

明确:例1和例2的问题一样,但已知条件不同。

教师:要求全班平均每人投中多少个,要知道什么条件?(学生试做,然后说出自己的列式和思路,充分讨论,如果有不同意见互相交换,最后弄清怎样是对的。)

板书:

(1)全班一共投中多少个?

2.5×12+3×11+3.2×10=95(个)

由学生完成。

(2)全班一共有多少人?

________________________

(3)全班平均每人投中多少个?

________________________

答:全班平均每人投中________个。

教师:你能列出综合算式吗?

板书:(2.5×12+3×11+3.2×10)÷(12+11+10)。

讨论:对比例2和例1有什么不同?解答时应该注意什么问题?

教师:求平均数时,有时不能除尽,这时需要根据具体情况取近似值。

(三)巩固反馈

1.做一做:

小亮读一本书,前4天平均每天看6.25页,后3天平均每天看8页。小亮这一星期平均每天看多少页?(先说思路,再列式计算。)

2.判断正误并说明理由。

①小李加工一批零件,前2时加工28个,后3时加工36个,平均每时加工多少个?

[ ]

A.(28+36)÷(3+2);

B.(28 × 2+36 × 3)÷(3+2);

C.(28+36)÷2。

②一辆汽车从甲地开往乙地,前5时平均每时行60千米,后3时平均每时行56千米,这辆汽车从甲地开往乙地,平均每时行驶多少千米?

[ ]

A.(60+56)÷(5+3);

B.(60+56)÷2;

C.(60×5+56×3)÷(5+3)。

(四)课堂总结(学生总结)

教师:解答求平均数应用题应注意哪些问题?

①明确问题求的是什么平均数;

②总数量÷总份数=平均数。

(五)布置作业 课本P15:1,2,3,4,5。

课堂教学设计说明

本节课是在较简单的求平均数应用题的基础上进行的。重点是让学生理解并巩固平均数的意义以及求平均数应用题的解题思路和方法,其中加权算术平均数的计算方法是难点。通过准备题与例1的对比突出重点,学生掌握求平均数的方法,同时培养学生分析、比较的能力。让学生充分讨论、尝试例2,培养学生独立解答问题的能力,从而突破了难点。

本节新课教学分为三部分。

第一部分,教学例1,加深对平均数应用题的解题方法的理解,共分3层。

第一层:由准备题与例1对比,找出异同点;

第二层:由问题出发找出解决问题的方法;

第三层:列出分步和综合算式。

第二部分:教学例2,强调根据题意确定算法,可分3层。

第一层:出示例2,审题找出与例1的异同点;

第二层:分组讨论解题方法;

第三层:列出分步、综合算式。

第三部分:对比例1、例2,找出异同点,从而加深对平均数应用题解题方法的理解。

板书设计(略)

求平均数教案 篇5

一、教学目的

1.进一步理解平均数的意义。

2.掌握求较复杂的平均数的解题方法,会根据收集到的数据求平均数。

3.培养学生具体问题具体分析的能力。

4.使学生认识到求平均数这一知识在现实生活中的意义,激发学习兴趣。

二、教学重点

使学生掌握较复杂的平均数应用题的解题方法。

三、教学难点

通过学习,使学生能够找准问题与条件,条件与条件之间相对应的关系,运用所掌握的方法灵活解答相关问题。

教学对象分析

低年级学生思维的基本特点是:从以具体形象思维为主要形式过渡到以抽象逻辑思维为主要形式,针对这一特点,利用多媒体这一新颖、直观的现代教学手段创设引人入胜的教学情境,并通过动手操作,讨论探究,观察分析,给学生充分的时间和机会,让他们主动参与获取知识的全过程,从而培养学生问题意识、策略意识及创新意识。

教学策略及教法设计

教学时有意识创设情境,激发学生探索问题的欲望,不断发现问题,解决问题.通过动手操作,观察演示,小组讨论等活动,让学生运用知识和能力的迁移规律,将知识结构转化为学生的认知结构,突出学生的'主体作用。

1.多媒体教学

运用微机精心设置问题情境,使学生自觉发现、意识到问题存在,可激活学生思维,促使问题意识的产生,又可以调动学生探索新知的积极性。

2.动手操作法

引导学生发现问题,提出问题,然后组织学生借助学具动手操作,寻求多种计算方法,同时运用多媒体,变静为动,直观形象,再结合语言表述,使学生的思维逐渐内化。

四、教学过程

1.复习较简单的平均数问题

出示复习题。

求平均数需要知道哪两个条件?怎样求平均数?

把复习题稍微改动一下,就是我们今天要学习的较复杂的求平均数问题。

2.学习例题①

(1)指名读题。

(2)启发提问。

①例题①的已知和问题与复习题的有什么不同?

②要求全班平均每人投中多少个,必须先知道什么条件?

③怎样求全班共投中多少个?

怎样求全班共有多少人?

怎样求平均数?,

(3)列综合算式并解答问题。

3.学习例题②

(1)指名读题。

(2)启发提问。

①例题②与刚学过的例题①有什么异同?

②要求全班平均每人投中多少,必须先知道什么条件?

③怎样求全班一共投中多少人?

怎样求全班一共有多少人?

怎样求平均数?

(3)列综合算式并解答问题。

(教师应告诉学生,求得的平均数有时不能恰好除尽,这时只要根据具体情况取近似值就可以了。这道题中已知数只有一位小数,因此得数取一位小数就可以了。)

(4)例题①与例题②有什么不同,解答时应注意什么?

(再次强调例题①与例题②的区别,培养学生具体问题具体分析,防止死套公式。)

4.完成书后“做一做”

五、课堂练习

●基础练习

1.填空。

(1)平均数=( )÷( )

(2)( )×( )=总数量

(3)总份数=( )÷( )

2.选择题。

(1)五年级两个班为希望工程捐款,一班42人共捐168元,二班45人共捐210元,平均每个班捐款多少元?正确列式为 ( )

A.(168+210)÷2 B.(168+210)÷(42+45)

(2)一个工厂前3天烧煤4.8吨:后4天烧煤7.8吨,这个工厂一星期平均每天烧煤多少吨 ( )

A. (7.8+4.8)÷(4—3) B. (4.8+7.8)÷(4+3)

●综合练习

1.劳动实践。

(1)同学们在校办工厂里糊纸盒。第一小组10人,平均每人糊7个;第二小组8人,平均每人糊6个;第三小组5人,平均每人糊4个。三个小组平均每人糊多少个?

(2)春光小学五年级同学参加春季植树,领来白杨树苗140棵,梧桐树苗60棵,桑树苗25棵,共分给5个班种,平均每班种多少棵?

2.下表是四年一班各组同学寒假阅读课外读物情况统计表。全班平均每人看多少本课外读物?(得数保留整数)

各组人数

12

14

13

12

平均每人阅读本数

6

4.5

5

5

●实践与应用

王华同学五次语文、数学单元练习成绩如下:

第一次:语文92.5分 数学100分

第二次:语文88分 数学97分

第三次:语文94分 数学98.5分

第四次:语文98.5分 数学100分

第五次:语文99分 数学97分

先分别算出五次语文、数学两科的平均分,再制成统计表。

王华同学五次语文、数学单元练习成绩统计表

年 月

板书

求平均数

① 五年级一班分成3组投篮球第一组10人,共投中28个;第二组11人,共投中33个;第三组9人,共投中23个。全班平均每人投中多少个?

(1)全班一共投中多少个?

28+33+23=84(个)

(2)全班一共有多少人?

10+11+9=30(人)

(3)全班平均每人投中多少个?

84÷30=2.8(个)

综合算式:(28+33+23)÷(10+11+9)=2.8(个)

答:全班平均每人投中2.8个。

② 下表是五年级二班3个组投中篮球情况统计表。全班平均每人投中多少个?(得数保留一位小数。)

各组人数

12

11

10

平均每人投中数

2.5

3

3.2

(1)全班一共投中多少个?

2.5×12+3×11+3.2×10=95(个)

(2)全班一共有多少人?

12+11+10=33(人)

(3)全班平均每人投中多少个?

95÷33≈2.9(个)

综合算式:(2.5×12+3×11+3.2×10)÷(12+11+10)≈2.9(个)

答:全班平均每人投中2.9个。

大家都在看