约分的教学反思

欢迎阅读约分的教学反思(精选4篇),内容由多美网整理,希望对大家有所帮助。

约分的教学反思 篇1

约分是在学生已经掌握了分数的基本性质,学习了求最大公因数的方法的基础上学习的。教学目标要求学生认识约分的含义,掌握约分的方法,能正确进行约分。

课开始我要求学生找出四个与老师说的分数相等的分数,使得学生在愉快的氛围中开始学习,调动学生的学习热情,激发学生的求知欲。使学生乐学、好学,较好地培养学生对数学学习的情感。

考虑学生已有的知识基础——分数基本性质和最大公因数的求法。通过要求学生找出四个与老师说的分数相等、分子分母都比较小的分数,合理地迁移知识,较好地帮助学生理解“约分”的含义,使知识深入浅出,便于学生理解和掌握。

为学生提供充分探究和发现的时间与空间,从约分含义的理解到约分方法的学习,都立足于培养学生的学习能力、教会学生学习方法,相信学生的潜能,通过找四个分数找出相等的关系这一活动,引发学生思考,发现几个分子分母不同的分数相等;用学过的知识解释这些分数相等的原因引导学生观察、理解约分的含义:同原分数相等,分子分母都比较小的分数;通过小组合作探究约分的方法为学生搭建了实践探究的平台,使学生在交流中碰撞不同的约分方法,最终达成共同的认识。

练习中体现了清晰的层次性,寓教于乐,使学生对约分的认识得以不断加深。

约分的教学反思 篇2

本节课我没有完全照搬课本上的例题1,而是利用例题1从18/24入手,让学生根据分数的基本性质,找出几个与它们大小相等的分数。学生通过写分数、说理由自然地复习了分数的基本性质。使学生在解决问题中自然而然地进入探究新知的状态。然后板书36/48=18/24=9/12=3/4 ,通过“比较这些相等分数的相同点和不同点”, 分数的分子和分母的数字都变小了,是因为分数的分子和分母同时除以了相同的数,即分子和分母的公因数,从而引出约分的概念。“36/48约分成3/4后还能继续再约分吗?为什么?”引导学生总结归纳出“分子和分母是互质数的分数,叫做最简分数” “你能举出几个最简分数吗?”引导学生不断地说,真正理解什么是最简分数。之后是学习例题2约分的书写格式及约分的方法。约分中用分子和分母的公约数去除它们的方法和算理,都很容易掌握,但是要能准确熟练地进行约分,必须要求学生掌握好求几个数的公约数,最大公约数,判断互质数,除法口算等旧知识。学生们基本上都对一次约分的方法感兴趣,但一次约分的要求更高,就是要一眼找出分子分母的最大公因数。

通过一系列递进式的探索活动,我让学生自己通过体验归纳总结,举例验证,由内到外的理解概念的意义,打破了概念教学教师一味讲解的模式,层层深入,激活了学生的思维,调动了学生学习的主动性和积极性,学生有足够的空间和时间去领略数学的魅力,从而成为学习的主人。

约分的教学反思 篇3

反思《约分》这节课,我觉得我对这节课不够重视,以为学过分数的基本性质和公因数,在教学时出示一个例子引导学生完成,使学生浅显的知道什么约分,让学生把什么是最简分数读了两遍,就让学生开始练习了。没有让学生亲历探索的过程。故而,在后面的练习中,很多学生找分数的分子和分母的公因数以及最大公因数的速度特别慢,还有的同学约分的结果不是最简分数。本以为相当简单的问题,可是我又用两节课时间去巩固练习,效果还是不太好。因此在计算分数加减法时暴露出来的问题就更严重了。

学生要理解掌握概念,必须要参与、经历知识的探索过程。向其他老师请教后,我再次思考了《约分》这节课的教法,特别是最简分数概念的揭示。

约分是分数基本性质的直接应用,为了使学生对最简分数的概念有充分的感知基础,可以写几组分数大小相等的分数:如9/12、3/4;3/6、10/20;让学生再说出几个与它们大小相等的分数,通过学生写分数、说理由自然地复习了分数的基本性质。

“在这些大小相等的分数中,你觉得哪个分数最特殊?为什么?”学生找出其中最简的那个分数最特殊,并说说特殊的原因:因为它们的分子分母已经不能再缩小了!“象3/4、1/2这样的分数还有吗?”引导学生不断的说,老师不断的写,从直接说一个分数,到说分子分母是连续自然数就可以、分子是1分母是非0非1的自然数,越来越归纳,越来越接近实质……说着说着,终于学生自己就会发现:只要分子分母的公因数只有1,这个分数就是最简分数!

无疑,让学生在看似不经意的写数中悟出概念,那种成功的快乐感,那种对最简分数概念的深刻理解,是接受式教学所无法企及的。

看来许多理念对于我还是书本上的,我应该有意识的改一改自己身上一些与理念不适应的教学行为——哪怕这些行为以前是“负责任”的标志。在教学中引导学生参与到探索知识的发生发展过程之中,突破以往数学学习单一,被动的方式,关注学生的实践活动,“通过自己的活动”获得情感、能力、智力的全面发展。

约分的教学反思 篇4

约分是分数基本性质的直接应用.为了使学生对最简分数的概念有充分的感知基础,我写了几组分数大小相等的分数:如9/12、3/4;3/6、10/20;让学生再说出几个与它们大小相等的分数,通过学生写分数、说理由自然地复习了分数的基本性质。

“在这些大小相等的分数中,你觉得哪个分数最特殊?为什么?”学生都直觉得找出其中最简的那个分数最特殊,因为它们的分子分母已经不能再缩小了!“象3/4、1/2这样的分数还有吗?”引导学生不断的说,老师不断的写,从直接说一个分数,到说分子分母是连续自然数就可以、分子是1分母是非0非1的自然数,孩子们的回答显然越来越归纳,越来越接近实质……说着说着,终于孩子们自己兴奋的发现:只要分子分母是互质数,这个分数就是最简分数!

无疑,让学生在看似不经意的写数中悟出概念,那种成功的快乐感,那种对最简分数概念的深刻理解,是接受式教学所无法企及的。

大家都在看