鸽巢问题教学设计

欢迎阅读鸽巢问题教学设计(精选5篇),内容由多美网整理,希望对大家有所帮助。

鸽巢问题教学设计 篇1

教学内容:教科书第68页例1。

教学目标:

1、使学生理解“抽屉原理”(“鸽巢原理”)的基本形式,并能初步运用“抽屉原理”解决相关的实际问题或解释相关的现象。

2、通过操作、观察、比较、说理等数学活动,使学生经历抽屉原理的形成过程,体会和掌握逻辑推理思想和模型思想,提高学习数学的兴趣。

教学重点:

经历“抽屉原理”的探究过程,了解掌握“抽屉原理”。

教学难点:

理解“抽屉原理”,并对一些简单的实际问题加以“模型化”。

教学模式:

学、探、练、展

教学准备:

多媒体课件一套

教学过程:

一、游戏导入

1.师生玩“扑克牌魔术”游戏。

(1)教师介绍:一副牌,取出大小王,还剩下52张牌,你们5人每人随意抽一张,我知道至少有2张牌是同花色的。相信吗?

(2)玩游戏,组织验证。

通过玩游戏验证,引导学生体会到:不管怎么抽,总有两张牌是同花色的。

2.导入新课。

刚才这个游戏当中,蕴含着一个数学问题,这节课我们就一起来研究这个有趣的.问题。

二、呈现问题,探究新知

课件呈现:例1.把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。为什么呢?

课件出示自学提示:

(1)“总有”和“至少”是什么意思?

(2)把4支铅笔放进3个笔筒中,可以怎么放?有几种

不同的放法?(请大家用摆一摆、画一画、写一写等方法把自己的想法表示出来。)

(3)把4支铅笔放进3个笔筒中,不管怎么放总有一个笔筒至少放进xxx支铅笔?

(一)自主探究,初步感知

1、学生小组合作探究。

2、反馈交流。

(1)枚举法。

(2)数的分解法:(4,0,0)(3,1,0)(2,2,0)(2,1,1)。

(3)假设法。

师:除了像这样把所有可能的情况都列举出来,还有没有别的

方法也可以证明这句话是正确的呢?

生:我是这样想的,先假设每个笔筒中放1支,这样还剩1支。这时无论放到哪个笔筒,那个笔筒中就有2支了。

师:你为什么要先在每个笔筒中放1支呢?

生:因为总共有4支,平均分,每个笔筒只能分到1支。

师:你为什么一开始就平均分呢?(板书:平均分)

生:平均分就可以使每个笔筒里的笔尽可能少一点。

师:我明白了。但是这样只能证明总有一个笔筒中肯定有2支笔,怎么能证明至少有2支呢?

生:平均分已经使每个笔筒里的笔尽可能少了,如果这样都符合要求,那另外的情况肯定也是符合要求的了。

(4)确认结论。

师:到现在为止,我们可以得出什么结论?

生(齐):把4支铅笔放进3个笔筒中,不管怎么放,总有一个笔筒里至少有2支铅笔。

(二)提升思维,构建模型

师:(口述)那要是

(1)把5支铅笔放进4个笔筒中,不管怎么放,总有一个笔筒里至少有xx支铅笔。

(2)把6支铅笔放进5个笔筒中,不管怎么放,总有一个笔筒里至少有xx支铅笔。

(3)10支铅笔放进9个笔筒中呢?100支铅笔放进99个笔筒中

2.建立模型。

师:通过刚才的分析,你有什么发现?

生:只要铅笔的数量比笔筒的数量多1,那么总有一个笔筒至少要放进2支笔。

师:对。铅笔放进笔筒我们会解释了,那么有关鸽子飞入鸽巢的问题,大家会解释吗?(课件出示)

师:以上这些问题有什么相同之处呢?

生:其实都是一样的,鸽巢就相当于笔筒,鸽子就相当于铅笔。

师:像这样的数学问题,我们就叫做“鸽巢问题”或“抽屉问题”,它们里面蕴含的这种数学原理,我们就叫做“鸽巢问题”或“抽屉问题”。(揭题)

三、基本练习。

四、拓展提升。

五、课堂小结。

六、作业布置。

完成课本第71页,练习十三,第1题。

鸽巢问题教学设计 篇2

鸽巢问题教学设计

作为一名为他人授业解惑的教育工作者,往往需要进行教学设计编写工作,借助教学设计可以更好地组织教学活动。写教学设计需要注意哪些格式呢?下面是小编精心整理的鸽巢问题教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。

鸽巢问题教学设计 篇3

【教学内容】人教版六年级下册第68--69 页《数学广角 --- 鸽巢问题 》

【教学目标】

1、知识与技能

经历鸽巢问题的探究过程, 初步理解“鸽巢问题”,会用“鸽巢问题”解决简单的实际问题。

2、过程与方法

通过操作、观察、比较、列举、假设、推理等活动发展学生的类推能力, 形成比较抽象的数学思维。

3、情感态度与价值观

(1)通过“鸽巢问题”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。

(2)使学生经历将具体问题“数学化”的过程,培养学生的“建模”思想。【教学重点】经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”。

【教学难点】理解“鸽巢问题”,并对一些简单实际问题加以“模型化”。

【教学过程】

一、创设情境引入课题

1 .游戏:上课前咱们先玩个游戏

规则:一副牌,取出大小王,还剩52 张,上来5 人每人随意抽一张。抽 到牌后藏好,老师能猜出你们这5张牌中至少有2 张牌是同花色的。

请5 个同学参加游戏,然后举起手中的牌让同学们见证奇迹。猜对了,给老师点掌声。有的同学会说这是巧合,那咱们再抽一次,这次让5个同学看着牌抽,选好自己要抽的花色,我猜你们这5张牌中还会至少有2 张牌是同花色的。谁有兴趣,请举手,再玩一次。

2. 导入课题:

知道刚才的游戏老师为什么能猜对吗?这里面蕴藏着一个非常有趣的数学问题,你们想不想来研究研究?好这节课我们就一起来研究这类问题,“鸽巢问题”。 (板书课题)

下面我们先从简单的情况入手。

二、合作探究发现规律

(一)教学例1 (由枚举法引出假设法, 初步“建模” ——平均分。 )

出示例1:把4 支笔放进 3 个笔筒中,不管怎么放,总有一个笔筒里至少有 2 支笔。

1.理解 “总有”和“至少”的.意思。

2 .运用“枚举法”初步探究。

(1 ) 把 4 支笔放进 3 个笔筒里,有几种不同的放法?自己动手在小组内摆一摆,画一画,说一说,把出现的几种情况都记录下来。

(2 )展示不同的方法。

(3)讲解:像这样一一列举出来的方法,在数学上叫枚举法。

3 .通过比较,引导“假设法”。

启发:你们在分的过程中有没有一种更为直接的方法,只摆一种情况也能得到这个结论?小组商量后再交流。课件展示

总结:假设每个笔筒先平均分1支,剩下的一支笔随便放入哪一个笔筒,总有一个笔筒至少有2支笔。

4.初步“建模” ----平均分 。

引导:运用“假设法”先在每个笔筒里分 1 支,这种均等的分法,又叫平均分,用什么方法计算?你能列式表示吗?

板书: 4 ÷ 3=1 …… 1 1+1=2

5.对比择优,体会“假设法”的优越。

对比:刚才用枚举和假设法两种方法进行思考,你认为哪一种方法更好呢?为什么?

发现:枚举法是一一列举来验证,在数字比较大的时候有局限性,而假设法先用平均分的方法在数据大的时候也同样适用。

6.概括“鸽巢问题”的一般规律。

追问:如果增加笔和笔筒的数量,又会怎样呢?

出示

(1 ) 把 5 支笔放进 4 个笔筒里,不管怎么放,总有一个笔筒里至少放进几支笔?为什么?

(2 )把 6 支笔放进 5 个笔筒里,不管怎么放,总有一个笔筒里至少放进几支笔?为什么?

(3 )把 100 支笔放进 99 个笔筒里,不管怎么放 , 总有一个笔筒里至少放进几支笔?为什么?

启发:“照样子,你能说一句这样的话吗?”

提问:发现了什么规律?

概括:只要笔的数量比笔筒数量多1, 总有一个笔筒里至少放进 2 支笔。

7.提问:难道这个规律只有在这种情况下才存在吗?如果余数不是1, 这个规律还存在吗?

出示课件:7只鸽子飞进了5个鸽笼,那么至少又会有几只鸽子飞进同一个鸽笼呢?

反馈质疑:运用“假设法”,每个鸽笼里先平均飞进 1 只,余下的两只会怎样飞呢?

追问: 哪种情况更符合“至少”这个结论呢?

优化答案:5 ÷ 3=1 …… 2 1+1=2

8只鸽子飞进了5个鸽笼,那么至少又会有几只鸽子飞进同一个鸽笼呢?11只呢?24只呢?

8. 总结规律。

看来你们又发现规律了,是吗?说一说。

总结概括:咱们把笔和鸽子数量叫做物体数,笔筒和鸽笼数量叫抽屉数,如果平均分后有剩余,那么总有一个鸽笼里放进“商 +1 ”本书。

(二)了解小资料—— “鸽巢问题”。

(三)你理解上课前表演的扑克牌游戏的道理了吗?

三、联系生活学以致用

1.基础园 ---- 我会填空

(1)把50本书放入49个抽屉里,不管怎么放,总有一个抽屉里至少有( )支笔。

(2)10只鸽子飞回4个鸽巢,不管怎么飞,总有一个鸽巢里至少有()只鸽子。

2、 拓展练习。

(1)三个小朋友做游戏,至少有()个小朋友性别相同。

(2)咱们学校有15位老师,我们中至少有()人属相相同。

四、课堂总结反思提升

师:通过这节课的学习,说说自己的收获或感受吧!

1. 学生反思总结数学思想方法,归纳所学知识。

2. 师:最后,老师送同学们一句话 , 在学习中“ 只要留心观察加上细心思考, 总有 新的发现!”

五、作业

(1)南奇小学有学生367人,我们可以肯定,在这367人中,至少有( )人的生日在同一日。

(2)一副扑克牌(除去大小王)52张牌,从中随意抽14张牌,无论怎么抽, 至少有2张牌是同一点数的?为什么?

板书:鸽巢问题(抽屉原理)

物体数抽屉数商余数至少数=商+1

5 ÷4=1……1 1+1=2

6 ÷5=1……1 1+1=2

100÷99=1……1 1+1=2

7 ÷ 5= 1……2 1+1=2

8 ÷ 5= 1……3 1+1=2

11÷ 5=2……12+1=3

24÷ 5=4……44+1=5

鸽巢问题教学设计 篇4

教学目标:

1.知识与技能:通过操作、观察、比较、推理等活动,初步了解鸽巢原理,学会简单的鸽巢原理分析方法,运用鸽巢原理的知识解决简单的实际问题。

2.过程与方法:在鸽巢原理的探究过程中,使学生逐步理解和掌握鸽巢原理,经历将具体问题数学化的过程,培养学生的模型思想。

3.情感态度:通过对鸽巢原理的灵活运用,感受数学的魅力,体会数学的价值,提高学生解决相关问题的能力和兴趣。

教学重点:经历鸽巢原理的探究过程,初步了解鸽巢原理。

教学难点:理解“总有”“至少”的意义,理解鸽巢原理,并对一些简单的实际问题加以模型化。

教学准备:多媒体课件、扑克牌、3个笔筒。

教学过程:

一、魔术游戏激趣导入:

1、老师这个魔术需要请1名同学来配合,谁愿意?

向学生介绍这是一幅扑克牌,取出大小王、还剩52张,(请学生随意抽出5张牌)好,见证奇迹的时刻到了,你手里有5张牌至少有两张牌的花色是一样的。(学生打开牌让大家看)

课件出示:至少有2张是同一花色。“至少”表示什么意思?

引导:老师为什么能作出准确的.判断呢?因为这个有趣的魔术中蕴含着一个数学原理,这节课我们就一起来研究这个问题。

板演:鸽巢问题

二、合作探究

(一)列举法:

课件出示:同学们,如果把3支笔放进2个笔筒中,会有哪几种摆放的结果?

找一组学生上前实物模拟操作摆放情况。

师问:同学们,你们谁能把摆放的情况用“总有……至少……”这个句式来概括出来吗?“总有”、“至少”分别又是什么意思呢?

概括得出:总有1个笔筒至少放2支笔。(及时肯定学生们的回答:你的逻辑思维能力真强)

课件出示:如果把4支笔放进3个笔筒中呢?快和你的小伙伴们交流探索一下:

1.分组探究,教师巡视指导。

预设学生会出现以下几种情况:(1)实物模拟(2)图示(3)数的分解

2.学生汇报,讲台展示。

3.学生概括得出:总有1个笔筒至少放2支笔。

4.小结:刚才我们通过以上方法列举出所有情况验证了结论,这种方法叫“列举法”。

(二)假设法

师问:同学们,将100支笔放99个笔筒,总有1个笔筒至少放进几支笔呢?

追问有勇气列举吗?预设:没有勇气列举

我们能不能找到一种更为直接的方法,找到“至少数”呢?

课件出示:4支笔放3个笔筒,总有1个笔筒至少放2支笔。这句话能快速得到验证吗?

1.引导学生思考:回顾下“至少”的意思,为保障每个笔筒都尽量少,不能出现某个笔筒特别多的情况,我们要把怎样分?学生尝试作答:

生:如果每个笔筒里放1支笔,放了3支,剩下的1支不管放进哪一个笔筒里,总有一个笔筒里至少有2支笔。既而教师图示。(及时肯定学生的探究能力)

2.引伸拓展:

(1) 5支笔放进4个笔筒,总有一个笔筒中至少放进( )支笔。

(2) 6支笔放进5个笔筒,总有一个笔筒中至少放进( )支笔。

(3) 100支笔放进99个笔筒,总有一个笔筒至少放进( )支笔。

也就是说:有n+1支笔放进n个笔筒中,总有一个笔筒至少放进2支笔。

3.小结:这种先假设按平均分,然后再分配剩余量的方法叫做“假设法”。

教师追问:列举法和假设法的优缺点是什么?

学生总结出:

列举法优点:能够做到不重复,不遗漏,结果一目了然。缺点:局限性,摆放更多笔浪费时间,效率低。

假设法的优点是:简洁、迅速解决问题,更具有一般性。

三、练习巩固,解决问题

1.5只鸽子飞进3个鸽笼,总有1个鸽笼至少飞进了几只鸽子?为什么?

2.同学们理解上面扑克牌的原理了吗?

四、鸽巢原理的由来

最早指出这个数学原理的是19世纪的德国数学家狄利克雷,这个原理被称为“狄利克雷原理”,又因为在讲述这个原理是,人们经常以鸽巢、抽屉为例,所以它往往也被称为“鸽巢原理”和“抽屉原理”。

五:板书设计

鸽巢问题

“总是”“至少”

列举法

假设法平均分

鸽巢问题教学设计 篇5

教学目标

1.通过猜测、验证、观察、分析等数学活动,经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”,会用“鸽巢原理”解决简单的实际问题。渗透“建模”思想。

2.经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。

3.通过“鸽巢原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。

教学重点

经历“鸽巢问题”的探究过程,初步了解“鸽巢原理”。

教学难点

理解“鸽巢问题”,并对一些简单实际问题加以“模型化”。

教具准备:相关课件相关学具(若干笔和筒)

教学过程

一、游戏激趣,初步体验。

游戏规则是:请这四位同学从数字1.2.3中任选一个自己喜欢的数字写在手心上,写好后,握紧拳头不要松开,让老师猜。

[设计意图:联系学生的生活实际,激发学习兴趣,使学生积极投入到后面问题的研究中。]

二、操作探究,发现规律。

1.具体操作,感知规律

教学例1:4支笔,三个筒,可以怎么放?请同学们运用实物放一放,看有几种摆放方法?

(1)学生结果

(4,0,0)(3,1,0)(2,2,0)(2,1,1)

(2)师生交流摆放的结果

(3)小结:不管怎么放,总有一个筒里至少放进了2支笔。

(学情预设:学生可能不会说,“不管怎么放,总有一个筒里至少放进了2支笔。”)

[设计意图:鸽巢问题对于学生来说,比较抽象,特别是“不管怎么放,总有一个筒里至少放进了2支笔。”这句话的理解。所以通过具体的操作,枚举所有的情况后,引导学生直接关注到每种分法中数量最多的筒,理解“总有一个筒里至少放进了2支笔”。让学生初步经历“数学证明”的过程,训练学生的逻辑思维能力。]

质疑:我们能不能找到一种更为直接的方法,只摆一次,也能得到这个结论的方法呢?

2.假设法,用“平均分”来演绎“鸽巢问题”。

1思考,同桌讨论:要怎么放,只放一次,就能得出这样的结论?

学生思考――同桌交流――

2汇报想法

预设生1:我们发现如果每个筒里放1支笔,最多放4支,剩下的1支不管放进哪一个筒里,总有一个筒里至少有2支笔。

3学生操作演示分法,明确这种分法其实就是“平均分”。

[设计意图:鼓励学生积极的自主探索,寻找不同的证明方法,在枚举法的基础上,学生意识到了要考虑最少的情况,从而引出假设法渗透平均分的思想。]

三、探究归纳,形成规律

1.课件出示第二个例题:5只鸽子飞回2个鸽巢呢?至少有几只鸽子飞进同一个鸽巢里?应该怎样列式“平均分”。

[设计意图:引导学生用平均分思想,并能用有余数的`除法算式表示思维的过程。]

根据学生回答板书:5÷2=2……1

(学情预设:会有一些学生回答,至少数=商+余数至少数=商+1)

根据学生回答,师边板书:至少数=商+余数?

至少数=商+1?

2.师依次创设疑问:7只鸽子飞回5个鸽巢呢?8只鸽子飞回5个鸽巢呢?9只鸽子飞回5个鸽巢呢?(根据回答,依次板书)

……

7÷5=1……2

8÷5=1……3

9÷5=1……4

观察板书,同学们有什么发现吗?

得出“物体的数量大于鸽巢的数量,总有一个鸽巢里至少放进(商+1)个物体”的结论。

板书:至少数=商+1

[设计意图:对规律的认识是循序渐进的。在初次发现规律的基础上,从“至少2支”得到“至少商+余数”个,再到得到“商+1”的结论。]

师过渡语:同学们的这一发现,称为“鸽巢问题”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。这一原理在解决实际问题中有着广泛的应用。“鸽巢原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。下面我们应用这一原理解决问题。

四、运用规律解决生活中的问题

课件出示习题.:

1.三个小朋友同行,其中必有几个小朋友性别相同。

2.五年一班共有学生53人,他们的年龄都相同,请你证明至少有两个小朋友出生在同一周。

3.从电影院中任意找来13个观众,至少有两个人属相相同。

……

[设计意图:让学生体会平常事中也有数学原理,有探究的成就感,激发对数学的热情。]

五、课堂总结

这节课我们学习了什么有趣的规律?请学生畅谈,师总结

大家都在看