高中数学说课稿

欢迎阅读高中数学说课稿(精选4篇),内容由多美网整理,希望对大家有所帮助。

高中数学说课稿 篇1

1.教材分析

1-1教学内容及包含的知识点

(1)本课内容是高中数学第二册第七章第三节《两条直线的位置关系》的最后一个内容

(2)包含知识点:点到直线的距离公式和两平行线的距离公式

1-2教材所处地位、作用和前后联系

本节课是两条直线位置关系的最后一个内容,在此之前,有对两线位置关系的定性刻画:平行、垂直,以及对相交两线的定量刻画:夹角、交点。在此之后,有圆锥曲线方程,因而本节既是对前面两线垂直、两线交点的复习,又是为后面计算点线距离(在直线和圆锥曲线构成的组合图形中)提供一套工具。

可见,本课有承前启后的作用。

1-3教学大纲要求

掌握点到直线的距离公式

1-4高考大纲要求及在高考中的显示形式

掌握点到直线的距离公式。在近年的高考中,通常以直线和圆锥曲线构成的组合图形为背景,判断直线和圆锥曲线的位置或构成三角形求高,涉及绝对值,直线垂直,最小值等。

1-5教学目标及确定依据

教学目标

(1)掌握点到直线的距离的概念、公式及公式的推导过程,能用公式来求点线距离和线线距离。

(2)培养学生探究性思维方法和由特殊到一般的研究能力。

(3)认识事物之间相互联系、互相转化的辩证法思想,培养学生转化知识的能力。

(4)渗透人文精神,既注重学生的智慧获得,又注重学生的情感发展。

确定依据:

中华人民共和国教育部制定的《全日制普通高级中学数学教学大纲》(20xx年4月第一版),《基础教育课程改革纲要(试行)》,《高考考试说明》(20xx年)

1-6教学重点、难点、关键

(1)重点:点到直线的距离公式

确定依据:由本节在教材中的地位确定

(2)难点:点到直线的距离公式的推导

确定依据:根据定义进行推导,思路自然,但运算繁琐;用等积法推导,运算较简单,但思路不自然,学生易被动,主体性得不到体现。

分析“尝试性题组”解题思路可突破难点

(3)关键:实现两个转化。一是将点线距离转化为定点到垂足的距离;二是利用等积法将其转化为直角三角形中三顶点的距离。

2.教法

2-1发现法:本节课为了培养学生探究性思维目标,在教学过程中,使老师的主导性和学生的主体性有机结合,使学生能够愉快地自觉学习,通过学生自己练习“尝试性题组”,引导、启发学生分析、发现、比较、论证等,从而形成完整的数学模型。

确定依据:

(1)美国教育学家波利亚的教与学三原则:主动学习原则,最佳动机原则,阶段渐进性原则。

(2)事物之间相互联系,相互转化的辩证法思想。

2-2教具:多媒体和黑板等传统教具

3.学法

3-1发现法:丰富学生的数学活动,学生经过练习、观察、分析、探索等步骤,自己发现解决问题的方法,比较论证后得到一般性结论,形成完整的数学模型,再运用所得理论和方法去解决问题。

一句话:还课堂以生命力,还学生以活力。

3-2学情:

(1)知识能力状况,本节为两线位置关系的最后一个内容,在这之前学生已经系统的学习了直线方程的各种形式,有对两线位置关系的定性认识和对两线相交的定量认识,为本节推证公式涉及到直线方程、两线垂直、两线交点作好了知识储备。同时学生对解析几何的实质中,用坐标系沟通直线与方程的研究办法,有了初步认识,数形结合的思想正逐渐趋于成熟。

(2)心理特点:又见“点到直线的距离”(初中已学习定义),学生既熟悉又陌生,既困惑又好奇,探询动机由此而生。

(3)生活经验:数学源于生活,生活中的点线距随处可见,怎样将实际问题数学化,是每个追求成长、追求发展的学生所渴求的一种研究能力。丰富的课堂数学活动能够让他们真正参与,体验过程,锤炼意志,培养能力。

3-3学具:直尺、三角板

3. 教学程序

时,此时又怎样求点A到直线

的距离呢?

生: 定性回答

点明课题,使学生明确学习目标。

创设“不愤不启,不悱不发”的学习情景。

练习

比较

发现

归纳

讨论

的距离为d

(1) A(2,4),

:x = 3, d=_____

(2) A(2,4),

:y = 3,d=_____

(3) A(2,4),

:x – y = 0,d=_____

尝试性题组告诉学生下手不难,还负责特例检验,从而增强学生参与的信心。

请三个同学上黑板板演

师: 请这三位同学分别说说自己的解题思路。

生: 回答

教学机智:应沉淀为三种思路:一,根据定义转化为定点到垂足的距离;二,利用等积法转化为直角三角形中三个顶点之间的距离;三,利用直角三角形中的边角关系。

视回答的情况,老师进行肯定、修正或补充提问:“还有其他不同的思路吗”。

说解题思路,一是让学生清晰有条理的表达自己的思考过程,二是其求解过程提示了证明的途径(根据定义或画坐标线时正好交出一个直角三角形)

师:很好,刚才我们解决了定点到特殊直线的距离问题,那么,点P(x0,y0)到一般直线

:Ax+By+C=0(A,B≠0)的距离又怎样求?

教学机智:如学生反应不大,则补充提问:上面三个题的解题思路对这个问题有启示吗?

生:方案一:根据定义

方案二:根据等积法

方案三: ......

设置此问,一是使学生的认知由特殊向一般转化,发现可能的方法,二是让学生体验数学活动充满着探索和创造,感受数学的生机和乐趣。

师生一起进行比较,锁定方案二进行推证。

“师生共作”体现新型师生观,且//时,又怎样求这两线的距离?

生:计算得线线距离公式

师:板书点到直线的距离公式,两平行线间距离公式

“没有新知识,新知识均是旧知识的组合”,创设此问可发挥学生的创造性,增加学生的成就感。

反思小结

经验共享

(六 分 钟)

师: 通过以上的学习,你有哪些收获?(知识,能力,情感)。有哪些疑问?谁能答这些疑问?

生: 讨论,回答。

对本节课用到的技能,数学思维方法等进行小结,使学生对本节知识有一个整体的认识。

共同进步,各取所长。

练习

(五 分 钟)

P53 练习 1, 2,3

熟练的用公式来求点线距离和线线距离。

再度延伸

(一 分 钟)

探索其他推导方法

“带着问题进课堂,带着更多的问题出课堂”,让学生真正学会学习。

4. 教学评价

学生完成反思性学习报告,书写要求:

(1) 整理知识结构

(2) 总结所学到的基本知识,技能和数学思想方法

(3) 总结在学习过程中的经验,发明发现,学习障碍等,说明产生障碍的原因

(4) 谈谈你对老师教法的建议和要求。

作用:

(1) 通过反思使学生对所学知识系统化。反思的过程实际上是学生思维内化,知识深化和认知牢固化的一个心理活动过程。

(2) 报告的写作本身就是一种创造性活动。

(3) 及时了解学生学习过程中的知识缺陷,思维障碍,有利于教师了解学生对自己的教法的满意度和效果,以便作出及时调整,及时进行补偿性教学。

5. 板书设计

(略)

6. 教学的反思总结

心理历练,得意之处,困惑之处,知识的传承发展,如何修正完善等。

高中数学说课稿 篇2

尊敬的各位专家、评委:

上午好!

今天我说课的课题是人教A版必修2第二章第二节《直线与圆的位置关系》。

我尝试利用新课标的理念来指导教学,对于本节课,我将以“教什么,怎么教,为什么这样教”为思路,从教材分析、目标分析、教法学法分析、教学过程分析和评价分析五个方面来谈谈我对教材的理解和教学的设计,敬请各位专家、评委批评指正。

一、教材分析

地位和作用

学生在初中的学习中已经了解直线与圆的位置关系,并知道可以利用直线与圆的焦点的个数以及圆心与直线的距离d与半径r的关系判断直线与圆的位置关系。但是,在初中学习时,利用圆心与直线的距离d与半径r的关系判断直线与圆的位置关系的方法却以结论性的形式呈现。在高一学习了解析几何后,要考虑的问题是如何掌握由直线和圆的方程判断直线与圆的位置关系的方法。解决问题的方法主要是几何法和代数法。其中几何法应该是在初中学习的基础上,结合高中所学的点到直线的距离公式求出圆心与直线的距离d后,比较与半径r的关系。从而作出判断,适可而止第引进用联立方程组转化为二次方程判别根的“纯代数判别法”,并与“几何法”欣赏比较,以决优劣,从而也深化了基本的“几何法”。含参数的问题、简单的弦的问题、切线问题等综合问题作为进一步的拓展提高或综合应用,也适度第引入课堂教学中,但以深化“判定直线与圆的位置关系”为目的,要控制难度。虽然学生学习解析几何了,但是把几何问题代数化无论是思维习惯还是具体转化方法,学生仍是似懂非懂,因此应不断强化,逐渐内化为学生的习惯和基本素质。

二、目标分析

(一)、教学目标

1、知识与技能

理解直线与圆的位置的种类;

利用平面直角坐标系中点到直线的距离公式求圆心到直线的距离;

会用点到直线的距离来判断直线与圆的位置关系。

2、过程与方法

设直线L:ax+by+c=o,圆C:x2+y2+Dx+Ey+F=0,圆的半径为r,圆心(- ,- )到直线的距离为d,则判别直线与圆的位置关系的根据有以下几点:

当d >r时,直线l与圆c相离;

当d =r时,直线l与圆c相切;

当d

3、情态与价值观

让学生通过观察图形,理解并掌握直线与圆的位置关系,培养学生数形结合的思想。

(二)、教学重点与难点

1、重点:直线与圆的位置关系的几何图形及其判断方法。

2、难点:用坐标判断直线与圆的位置关系。

三、教法学法分

(一)、教法

教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法:

1、启发引导学生思考、分析、实验、探索、归纳。

2、采用“从特殊到一般”、“从具体到抽象”的方法。

3、体现“对比联系”、“数形结合”及“分类讨论”的思想方法。

4、投影仪演示法。

在整个过程中,应以学生看,学生想,学生议,学生练为主体,教师在学生仔细观察、类比、想象的基础上通过问题串的形式加以引导点拨,对照,归纳,整理,只有这样,才能唤起学生对原有知识的回忆,自觉地找到新旧知识的联系,使新学知识更牢固,理解更深刻。

(二)、学法

建构主义学习理论认为,学习是学生积极主动地建构知识的过程,学习应该与学生熟悉的背景相联系。在教学中,让学生在问题情境中,经历知识的形成和发展,通过观察、操作、归纳、探索、交流、反思参与学习,认识和理解数学知识,学会学习,发展能力。

四、教学过程分析

(一)、教学过程设计

问题 设计意图 师生活动

1、初中学过的平面几何中,直线与圆的位置关系有几类? 启发学生由图形获取判断直线与圆的位置关系的直观认知,引入新课 师:让学生之间进行讨论,交流,引导学生观察图形,导入新课

生:看图,并说出自己的看法

2、直线与圆的位置关系有几种? 得出直线与圆的位置关系的几何特征与种类 师:引导学生利用类比,归纳的思想,总结直线与圆的位置关系的种类,进一步神话数形结合的数学思想

生:学生观察图形,利用类比,归纳的思想,总结直线与圆的位置关

3、在初中,我们怎么样判断直线与圆的位置关系呢?如何用直线与圆的方程判断他们之间的位置关系呢?

你能说出判断直线与圆的位置关系的两

种方法吗? 使学生回忆初中的数学知识,培养抽象的概括能力。

抽象判断呢直线与圆的位置关系的思路和方法 师:引导学生回忆初中判断直线与圆的位置关系的思想过程

生:回忆直线与圆的位置关系的判断过程

师:引导学生从集合的角度判断直线与圆的方法

生:利用图形,寻求两种方法的数学思路

5、你能用两种判断直线与圆的位置关系的数学思路解决例1的问题吗? 体会判断直线与圆的位置关系的思想方法,关注量与量的之间的关系 师:指导学生阅读教材书上的例1

生:阅读教材书上的例1,并完成教材书上的136页的练习题2

6、通过学习教材书上的例1,你能总结下判断直线与圆的位置 关系的步骤吗? 是学生熟悉判断直线与圆的位置关系的基本步骤 生:于都例1

师:分析例1 ,并展示解答过程,启发学生概括判断直线与圆的位置关系的基本步骤,注意给学生留有思考的时间

生:交流自己总结的步骤

7、通过学习教材书上的例2,你能说明例2中体现的数学思想方法吗? 进一步深化数形结合的数学思想 师:指导学生阅读并完成教材书上的例2 ,启发学生利用数形结合的数学思想解决问题

生:阅读教材书上的例2 ,并完成137的练习题

8、通过例2的学习,你发现了什么? 明确弦长的运算方法 师:引导并启发学生探索直线与圆的相交弦的求法

生:通过分析,抽象,归纳,得出相交弦的运算方法

9、完成教材书上的136页的习题1234 巩固所学过的知识,进一步理解和掌握直线与圆的位置关系 师:指导学生完成练习题

生:互相讨论交流,完成练习题

10、课堂小结

教师提出下列问题让学生思考

通过直线与圆的位置关系的判断,你学到什么了?

判断直线与圆的位置关系有几种方法?他们的特点是什么?

如何求直线与圆的相交弦长?

(二)、作业设计

作业分为必做题和选择题,必做题是对本节课学生知识水平的反馈,选择题是对本节课内容的延伸与连贯,强调学以致用。通过作业设置,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生的自主发展、合作探究的学习氛围的形成。

我设计了以下作业:

必做题:课后习题A 1,2,3;

选择题:课后习题B1,2,3;

(三)、板书设计

板书要基本体现课堂的内容和方法,体现课堂进程,能简明扼要反映知识结构及其相互关系:能指导教师的教学进程、引导学生探索知识;通过使用幻灯片辅助板书,节省课堂时间,使课堂进程更加连贯。

五、评价分析

学生学习的结果评价固然重要,但是更重要的是学生学习的过程评价。我采用了及时点评、延时点评与学生互评相结合,全面考查学生在知识、思想、能力等方面的发展情况,在质疑探究的过程中,评价学生是否有积极的情感态度和顽强的理性精神,在概念反思过程中评价学生的归纳猜想能力是否得到发展,通过巩固练习考查学生对本节是否有一个完整的集训,并进行及时的调整和补充。

以上就是我对本节课的理解和设计,敬请各位专家、评委批评指正。

谢谢!

高中数学说课稿 篇3

1、对教材地位与作用的认识

在高中数学教学中,作为数学思想应向学生渗透,强化的有:函数与方程思想;数形结合思想;分类讨论思想;等价转化及运动变化思想。不是所有的课都能把这些思想自然的容纳进去,但由于“曲线和方程”这一节在教材中的特殊地位,它把代数和几何两个单科自然而紧密地结合在一起,因而上述思想能用到大半,这不能不引起我们教师的重视。“曲线和方程”这节教材揭示了几何中的形与代数中的数相统一的关系,为“依形判数”与“就数论形”的相互转化开辟了途径,这正体现了解析几何这门课的基本思想,用代数的方法研究几何问题。”曲线与方程”是解析几何中最为重要的基本内容之一.在理论上它是基础,在应用上它是工具,对全部解析几何的教学有着深远的影响,另外在高考中也是考察的重点内容,尤其是求曲线的方程,学生只有透彻理解了曲线与方程的含义,才算是找到了解析几何学习得入门之路。应该认识到这节“曲线和方程”得开头课是解析几何教学的“重头戏”!

2、教学目标的确定及依据

(大纲的要求)通过本小节的学习,要使学生了解解析几何的基本思想,了解用坐标法研究几何问题的初步知识和观点,理解曲线的方程和方程的曲线的意义,初步掌握求曲线的方程的方法.所以第一课我在教学目标上是这样设定的:

1).了解曲线上的点与方程的解之间的一一对应关系,领会“曲线的方程”与“方程的曲线”的概念及其关系,并能作简单的判断与推理;

2).在形成概念的过程中,培养分析、抽象和概括等思维能力;

3)会证明已知曲线的方程。

本节课的教学目标定在“初步掌握”的水平上,但“初步”绝不等同于“含糊”,它反应在学生的学习行为上,即要求学生能答出曲线与方程间必须满足的两个关系,才能称作“方程的曲线”和“曲线的方程”,两者缺一不可,并能借助实例进一步明确这二者的区别。知识的学习与能力的培养是同步的,在具体操作上结合图形分析与反例,来辨析“两个关系”之间的区别,从认识特例到归纳出曲线的方程和方程的曲线一般概念,因而在形成概念的过程中,培养学生分析、抽象、概括的思维能力.会证明已知曲线的方程就能更进一步的理解曲线和方程概念的含义并为下节课求曲线的方程打基础.

3、如何突破重难点

本小节的重点是理解曲线与方程的有关概念与相互联系,以及求曲线方程的方法、步骤.只有深刻理解了曲线与方程的含义,才能真正掌握好求曲线轨迹方程的一般方法,进一步学好后面的内容.曲线和方程的概念比较抽象,由直观表象到抽象概念有相当难度,对学生理解上可能遇到的问题是学生不理解“曲线上的点的坐标都是方程的解”和”“以这个方程的解为坐标的点都是曲线上的点”这两句话在揭示“曲线和方程”关系各自所起的作用。有的学生只从字面上死记硬背;有的学生甚至误以为这两句话是同义反复。要突破这一点,关键在于利用充要条件,函数图象,直线和方程,轨迹等知.识,正反两方面说明问题.

本节课的难点在于对定义中为什么要规定两个关系(纯粹性和完备性)产生困惑,原因是不理解两者缺任何一个都将扩大概念的外延。

4、对教学过程的设计

今天要讲的“曲线和方程”这部分教材的内容主要包括“曲线方程的概念”,“已知曲线求它的方程”、“已知方程作出它的曲线”等。在课时安排上分为3个课时进行教学,具体的课时分配是:第一课时讲解“曲线与方程”和“方程与曲线”的概念及其关系;第二课时讲解求曲线的方程一般方法,第三课时为习题课,通过练习来总结、巩固和深化本节知识。如果以为学生不真正领悟曲线和方程得关系照样能求出方程,照样能计算某些难题,因而可以忽视这个基本概念得教学,这不能不说是一种“舍本逐末”得偏见。

在教材中,曲线和方程这一概念是随着知识的讲授而不断深化,逐步为学生所理解,因而教材中从直线开始,多次,重复地阐述,这说明其重要性.同时也说明理解它,掌握它确实需要一个过程.数学本身是很抽象,把数学和实际问题相结合才能激发学生的学习兴趣,真正达到素质教育的要求。根据以上考虑,确定了这节课教学过程的基本线索是:实际问题引入,提出课题→运用反例,揭示内涵→讨论归纳,得出定义→集合表述,强化理解→知识应用,反复辨析。

教材的编写也往往体现着教法.,例如,本节一开头说“我们研究过直线的各种方程,讨论了直线和二元一次方程的关系。”学生已经有了用方程(有时用函数式的形式出现)表示曲线的感性认识,在本节教学中充分发挥这些感性认识的作用。从人造地球卫星运行的轨道等生动形象的实际问题引入,引起学生的兴趣和好奇心以及对数学的应用有了更高的认识,更激发他们进一步学好数学的决心。(具体……)提出课题。运用学生熟知的知识,1)求线段AB的垂直平分线方程和2)作出方程y=x2的图象作为引例,从曲线到方程,从方程到曲线两方面入手分析了曲线上的点和方程的解之间的关系,为形成曲线和方程的概念提供了实际模型,但是如果就此而由教师直接给出结论,那就不仅会失去开发学生思维的机会,影响学生的理解,而且会使教学变得枯燥乏味,抑制了学生学习的主动性和积极性,接着用反例来突破难点。通过反例1)直线去掉第三象限部分,则方程y=x的解为坐标的点不都在曲线上,以及2)改方程为,那么曲线上就混有不满足方程的点坐标就此揭示“两者缺一”与直觉的矛盾,通过举反例和步步追问使我要的答案逐步明了,从而又促使学生对概念表述的严格性进行探索,学生自已认识曲线和方程的概念必须要具备的两个关系,培养学生分析,归纳问题的能力,自然得出定义。并且把这个关系板书到黑板上,以示这就是这节课的重点。为了在重难点有所突破后强化其认识,又用集合相等的概念来解释曲线和方程的对应关系,并以此为工具来分析实例,这将有助于学生的理解,有助于学生通其法,知其理。

然后通过运用与练习,纠正错误的认识,促使对概念的正确理解,通过反复重现,可以不断领悟,加强识记。所以安排了例1,例2(见课件)目的也在于帮助学生正确理解概念,通过解题辨析“两个关系”,实现本节课的教学目标,为此题目中的“曲线”和“方程”都力求简单,由此得出点在曲线上的充要条件。

曲线是符合某种条件的点的轨迹,为了下节课“求曲线的方程”的教学,安排了例3(见课件)证明曲线的方程,增加学生的感性认识,由于教材上有严谨的证明过程,让学生阅读并总结证明已知曲线的方程的方法和步骤,上升到理论上,可以培养学生独立思考,阅读归纳的能力。为了让学生更深入的理解这节课的主要内容,通过4个变式引申检查他们的掌握程度,但难度不能太大,我选择这样几个练习:(略)简单评讲后小结本课的主要内容,进一步强化“曲线和方程”概念中两个关系缺一不可,只有符合关系1)2)才能进行数与形的转化。由于下节课的内容是求曲线的方程,特地安排了一个思考探索题。

5、对学生学习活动的引导和组织

教案的设计与教案的实施往往有一定的距离,本节课有着概念性强,思维量大,例题与练习题不多的特点,这就决定了整节课将以学生的观察、思考、讨论为主,通过提问,举例,启发,互动完成教学,在具体操作上比较灵活,视学生的具体情况而定,把握学生的思维规律于数学思想的基本方法。例如,在概念教学中引导学生看反例,通过正反对比的方法,当学生观察了例1回答不清为什么,可以举出几个点的坐标作检验,这就是”从特殊到一般“的方法:或引导学生看图,比比划划,这就是“从直观到抽象”的方法。只要启发方法符合学生的认识规律,学生的认识活动就会顺利展开,而且在认知的过程中训练了探索的能力。强化数形结合、化归与转化的数学思想方法,完善学生的数学的结构,让学生动手、动脑,以及观察、联想、猜测、归纳等合理推理,鼓励学生多向思维、积极思考,勇于探索,从中培养学生合情推理能力,数学交流与合作能力以及主动参与的精神。

高中数学说课稿 篇4

各位老师:

今天我说课的题目是《输入、输出语句和赋值语句》,内容选自于新课程人教A版必修3第一章第二节,课时安排为一个课时。下面我将从教材分析、教学目标分析、教学方法与手段分析、教学过程分析等四大方面来阐述我对这节课的分析和设计:

一、教材分析

1.教材所处的地位和作用

我们用自然语言或程序框图描述的算法,但是计算机是无法“看得懂,听得见”的。因此还需要将算法用计算机能够理解的程序设计语言翻译成计算机程序。程序设计语言有很多种。为了实现算法中的三种基本的逻辑结构:顺序结构、条件结构和循环结构,各种程序设计语言中都包含下列基本的算法语句:输入语句、输出语句、赋值语句、条件语句和循环语句.。而我们今天所要学习的是前三种算法语句,它们基本上是对应于算法中的顺序结构的。

2.教学的重点和难点

重点:正确理解输入语句、输出语句、赋值语句的作用。

难点:准确写出输入语句、输出语句、赋值语句。

二、教学目标分析

1.知识与技能目标:

(1)正确理解输入语句、输出语句、赋值语句的结构。

(2)会写一些简单的程序。

(3)掌握赋值语句中的“=”的作用。

2.过程与方法目标:

(1)让学生充分地感知、体验应用计算机解决数学问题的方法;并能初步操作、模仿。

(2)通过模仿,操作,探索的过程,体会算法的基本思想和基本语句的用途,提高学生应用数学软件的能力.

3.情感,态度和价值观目标

(1) 通过对三种语句的了解和实现,发展有条理的思考,表达的能力,提高逻辑思维能力.

(2) 学习算法语句,帮助学生利用计算机软件实现算法,活跃思维,提高学生的数学素养.

(3) 结合计算机软件的应用, 增强应用数学的意识,在计算机上实现算法让学生体会成功喜悦.

三、教学方法与手段分析

1.教学方法:引导与合作交流相结合,学生在体会三种语句结构格式的过程中,让学生积极参与,讨论交流,充分挖掘三种算法语句的格式特点及意义,在分析具体问题的过程中总结三种算法语句的思想与特征.

2.教学手段:运用计算机、图形计算器辅助教学

四、教学过程分析

1. 创设情境(约5分钟)

在课的开始,我要求学生们举出一些在日常生活中所应用到的有关计算机的例子,如:听MP3,看电影,玩游戏,打字排版,画卡通画,处理数据等等,并告诉他们在现代社会里,计算机已经成为人们日常生活和工作不可缺少的工具,然后接着问他们知不知道计算机到底是怎样工作的?通过这个问题引出我们今天所要学习的内容。(板出课题)

在这个过程中,我让学生们将课本学习的内容与现实生活联系在了一起,这样能够激起他们对接下来的所要学习内容的兴趣,为整节课的学习打下一个良好的基础。

2.探究新知(约15分钟)

这里我先给出一个题目:用描点法作出函数

的图象,用描点法作函数的图象时,需要先求出自变量与函数的对应值。编写程序,分别计算当

时的函数值。(程序由我在课前准备好,教学中直接调用运行)

程序:INPUT“x=”;x 输入语句

y=x^3+3*x^2-24*x+30 赋值语句

PRINT x 输出语句

PRINT y 输出语句

END

(学生们先看,再跟着做,先不必深究该程序如何得来,只要模仿编写程序,通过运行自己编写的程序发现问题所在,进一步提高学生的模仿能力)

之后,我向学生们提问:在这个程序中,他们觉得哪些是输入语句、输出语句和赋值语句?(同学们互相交流、议论、猜想、概括出结论。提示:“input”和“print”的中文意思,还要请学生们注意到在赋值语句中的赋值号“=”与数学中的等号意义不同。)

此过程由老师引导,学生们自己讨论并总结出什么是输入语句、输出语句和赋值语句,这样比老师直接地将知识传授给他们,学习的效果更佳,同时也锻炼了学生们思考问题的能力和概括能力,激发学习兴趣。

然后给出一个思考题:在1.1.2中程序框图中的输入框,输出框的内容怎样用输入语句、输出语句来表达?(学生讨论、交流想法,然后请学生作答)这样可以及时应用刚刚学习的内容,并可以将前后所学知识联系起来。

3.例题精析(约12分钟)

在本环节中我为学生们准备了三道例题,这三道例题均选自课本的例2、例3和例4,学生通过这几道例题的讲解,结合计算机程序上机运用,可以掌握在程序设计语言中的前三种算法语句,体会到他们在程序中的意义和作用。

4.课堂精练(约4分钟)

P15 练习 1.

提问:如果要求输入一个摄氏温度,输出其相应的华氏温度,又该如何设计程序?(学生课后思考,讨论完成)通过提问启发学生们思考,发散思维。

5.课堂小结(约5分钟)

⑴输入语句、输出语句和赋值语句的结构特点及联系

⑵应用输入语句,输出语句,赋值语句编写一些简单的程序解决数学问题

⑶ 赋值语句中“=”的作用及应用

⑷编程一般的步骤:先写出算法,再进行编程。

6.布置作业

P23 习题1.2 A组 1(2)、2

[设计意图]课后作业的布置是为了检验学生对本节课内容的理解和运用程度以及实际接受情况,并促使学生进一步巩固和掌握所学内容。

7.板书设计

大家都在看