二次根式教学设计

欢迎阅读二次根式教学设计(精选4篇),内容由多美网整理,希望对大家有所帮助。

二次根式教学设计 篇1

教学目标

1、使学生理解最简二次根式的概念;

2、掌握把二次根式化为最简二次根式的方法。

教学重点和难点

重点:化二次根式为最简二次根式的方法。

难点:最简二次根式概念的理解。

一、导入新课

计算:

我们再看下面的问题:

简,得到

从上面例子可以看出,如果把二次根式先进行化简,会对解决问题带来方便。

二、新课

答:

1、被开方数的因数是整数或整式;

2、被开方数中不含能开得尽方的因数或因式。

满足上面两个条件的二次根式叫做最简二次根式。

例1 试判断下列各式中哪些是最简二次根式,哪些不是?为什么?

(1)不是最简二次根式。因为a3=a2·a,而a2可以开方,即被开方数中有开得尽方的因式。整数。

(3)是最简二次根式。因为被开方数的因式x2+y2开不尽方,而且是整式。

(4)是最简二次根式。因为被开方数的因式a-b开不尽方,而且是整式。

(5)是最简二次根式。因为被开方数的因式5x开不尽方,而且是整式。

(6)不是最简二次根式。因为被开方数中的因数8=22·2,含有开得尽的因数22。

指出:从(1),(2),(6)题可以看到如下两个结论。

1、在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;

2、在二次根式的被开方数中的.每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式。

例2 把下列各式化为最简二次根式:

分析:把被开方数分解因式或因数,再利用积的算术平方根的性质

例3 把下列各式化成最简二次根式:

分析:题(1)的被开方数是带分数,应把它变成假分数,然后将分母有理化,把原式化成最简二次根式。

题(2)及题(3)的被开方数是分式,先应用商的算术平方根的性质把原式表示为两个根式的商的形式,再把分母有理化,把原式化成最简二次根式。

通过例2、例3,请同学们总结出把二次根式化成最简二次根式的方法。

答:如果被开方数是分式或分数(包括小数)先利用商的算术平方根的性质,把它写成分式的形式,然后利用分母有理化化简。

如果被开方数是整式或整数,先把它分解因式或分解因数,然后把开得尽方的因式或因数开出来,从而将式子化简。

三、课堂练习

1、在下列各式中,是最简二次根式的式子为 [ ]的二次根式的式子有_____个。 [ ]

A、2 B、3

C、1 D、0

3、把下列各式化成最简二次根式:

答案:

1、B

2、B

四、小结

1、最简二次根式必须满足两个条件:

(1)被开方数的因数是整数,因式是整式;

(2)被开方数中不含能开得尽方的因数或因式。

2、把一个式子化为最简二次根式的方法是:

(1)如果被开方数是整式或整数,先把它分解成因式(或因数)的积的形式,把开得尽方的因式(或因数)移到根号外;

(2)如果被开方数含有分母,应去掉分母的根号。

五、作业

1、把下列各式化成最简二次根式:

2、把下列各式化成最简二次根式:

二次根式教学设计 篇2

教学准备

1.教学目标

(1)学生能用二次根式表示实际问题中的数量和数量关系,体会研究二次根式的必要性.

(2)学生能根据算术平方根的意义了解二次根式的概念,知道被开方数必须是非负数的理由,知道二次根式本身是一个非负数,会求二次根式中被开方数字母的取值范围. 2.教学重点/难点

理解二次根式的双重非负性.

3.教学用具

4.标签

教学过程

1.创设情境,提出问题

问题1你能用带有根号的`的式子填空吗?

(1)面积为3 的正方形的边长为_______,面积为S 的正方形的边长为_______.

(2)一个长方形围栏,长是宽的2 倍,面积为130m?,则它的宽为______m.

(3)一个物体从高处自由落下,落到地面所用的时间 t(单位:s)与开始落下的高度h(单位:m)满足关系 h =5t?,如果用含有h 的式子表示 t ,则t= _____.

师生活动:学生独立完成上述问题,用算术平方根表示结果,教师进行适当引导和评价.

【设计意图】让学生在填空过程中初步感知二次根式与实际生活的紧密联系,体会研究二次根式的必要性.

问题2 上面得到的式子

分别表示什么意义?它们有什么共同特征?

师生活动:教师引导学生说出各式的意义,概括它们的共同特征:都表示一个非负数(包括字母或式子表示的非负数)的算术平方根.

【设计意图】为概括二次根式的概念作铺垫.

2.抽象概括,形成概念

问题3 你能用一个式子表示一个非负数的算术平方根吗?

师生活动:学生小组讨论,全班交流.教师由此给出二次根式的定义:一般地,我们把形如

【设计意图】让学生体会由特殊到一般的过程,培养学生的概括能力.

追问:在二次根式的概念中,为什么要强调“a≥0”?

师生活动:教师引导学生讨论,知道二次根式被开方数必须是非负数的理由.

【设计意图】进一步加深学生对二次根式被开方数必须是非负数的理解. 3.辨析概念,应用巩固

问题4你能比较与0的大小吗?

4.综合运用,巩固提高

练习1 完成教科书第3页的练习.

练习2 当x 是什么实数时,下列各式有意义

课堂小结

教师和学生一起回顾本节课所学主要内容,并请学生回答以下问题.

(1)本节课你学到了哪一类新的式子?

(2)二次根式有意义的条件是什么?二次根式的值的范围是什么?

(3)二次根式与算术平方根有什么关系?

课后习题

二次根式教学设计 篇3

二次根式教学设计10篇

作为一名教职工,时常需要准备好教学设计,教学设计是把教学原理转化为教学材料和教学活动的计划。那要怎么写好教学设计呢?以下是小编为大家整理的二次根式教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。

二次根式教学设计 篇4

1、通过二次根式混合运算的学习,进一步了解二次根式运算法则,知道二次根式混合运算顺序,会进行二次根式的混合运算。

2、在进行二次根式混合运算的过程中,体会类比思想,逐步养成认真仔细的学习品质,进一步提高运算能力。

教学重点:二次根式混合运算算理的理解。

教学难点:类比整式运算准确快速的进行二次根式的混合运算。

教学过程:

一、情境诱导

《二次根式混合运算习题课》教学设计-杨桂花

二、练习指导

(学生完成练习提纲,可以讨论,老师做必要的'板书准备,然后巡回指导,了解情况、)

练习提纲:《二次根式混合运算习题课》教学设计-杨桂花

三、展示归纳

1、学生汇报解题过程,生说师写;

2、发动其他学生评价补充完善;

3、师画龙点睛强调:

(1)二次根式混合运算的运算顺序跟有理数运算顺序一样,先乘方,再乘除,最后加减。

(2)二次根式混合运算与整式的运算有很多相似之处,因此可类比整式的运算进行二次根式的混合运算。

四、变式练习

(先让学生独立完成,老师做必要的板书准备后巡回指导,了解情况; 然后让有一定问题的学生汇报展示,发动学生评价完善,老师强调关键地方,总结思想方法。)

《二次根式混合运算习题课》教学设计-杨桂花

五、小结

本节课你有哪些收获?还有什么要提醒同学们注意的。(学生总结,百花齐放,老师不做限定,没说到的,老师补充。)

六、布置作业

《二次根式混合运算习题课》教学设计-杨桂花

大家都在看