欢迎阅读圆锥的体积说课稿(精选4篇),内容由多美网整理,希望对大家有所帮助。
圆锥的体积说课稿 篇1
一、教材分析
本节课是北师大版数学教材六年级下册第一单元第11~12页的内容——圆锥的体积。
这部分内容是发展学生空间观念的内容,也是小学阶段几何初步知识的最后一个内容,是学生在了解和理解了体积和容积的含义基础上,进一步了解圆锥体积或容积;在研究了圆柱体积计算方法的基础上,教材继续渗透类比的思想,再次引导学生经历“类比猜想——验证说明”的过程,进行圆锥体积计算方法的探索。内容包括了解圆锥体积或容积,理解圆锥体积的计算公式和圆锥体积计算公式的具体运用。
二、学生情况
学生已经直观认识了长方体、正方体,掌握了长方体、正方体体积的计算方法,在前面的课时中也已经经历了“类比猜想——验证说明”的探索过程,通过已有的长方体、正方体体积计算方法,学习了圆柱的体积计算方法,在此基础上,让学生再次经历类比探索去学习圆锥体积计算方法。但长方体、正方体和圆柱都是直柱体,类比和猜想圆柱体积计算方法对学生来说比较容易,但是圆锥不是直柱体,因此在探索活动中,需要引导学生提出合理的猜想。学生对这部分内容的掌握,不仅有利于掌握立体图形之间的本质联系,提高几何体知识掌握水平,同时也利于提高运用所学数学知识和方法解决一些简单实际问题的能力。
三、教学目标
根据新课标的具体要求,和本节课的教学内容,结合学生实际制定了以下教学目标。
知识目标:
1、结合具体情境和实践活动,了解圆锥的体积或容积的含义,进一步体会物体体积和容积的含义。
2、经历圆锥体积计算公式的推导过程,理解并掌握圆锥体积的计算公式,能正确计算圆锥体积。
3、能运用圆锥体积的计算方法,解决有关实际问题。
能力目标:培养学生的观察、操作能力,进一步丰富对空间的认识,建立空间观念,发展学生的形象思维,增强学生的应用意识。
情感目标:能积极参加实验活动,培养学生探索的精神和小组合作的意识。
四、教学重、难点
重点:圆锥体积的计算。
难点:理解圆锥体积与圆柱体积的关系。
关键:经历“小实验”活动,在活动中发现规律。
五、教法、学法
本节课,在教法和学法上力求体现以下两方面:
1、以讲解法、教具操作法、实验法为主,实现教学目标,在教学中,即充分发挥学生的主体作用,调动学生积极主动地参与教学全过程。
2、教学充分发挥学生的主体作用。通过自己操作实验、观察比较、讨论小结,发现圆柱与圆锥的体积关系,从而推导出圆锥的体积计算公式。
六、教具准备
等底等高的圆柱体和圆锥体容器,不等底等高的圆柱和圆锥。
七、教学环节
环节一复习铺垫
回忆并应用圆柱体积计算公式。通过练习巩固对圆柱体积计算公式的认识,为下面学习圆锥体积计算公式作好铺垫。
环节二探索新知。
首先出示教材中的'情境图,并提出问题:求这堆小麦的体积,实际上就是求什么?引导学生结合情境来进一步体会圆锥体积的含义。接着直接揭示课题——研究圆锥体积计算方法。
探索圆锥体积计算方法。分为以下几个步骤完成。
步骤一:引导学生回忆圆柱体积计算方法的推导,这样,学生可以利用类比迁移规律,从求圆柱体积的思路、方法中得到启示。然后让学生思考:圆锥的体积也能转化成学过的体积来计算吗?转化成哪种形体最合适?学生很容易根据圆柱和圆锥的底面都是园,来联想到转化成圆柱。
步骤二:放手让学生大胆的猜想如何计算圆锥的体积。学生很容易想到如果是用底面积乘高,计算出来的是圆柱的体积,而直觉会让他们想到圆锥的体积应该比圆柱体积小,但这个时候他们并没有意识到“等底等高”。让学生继续猜想应该是圆柱的几分之几,并说明猜想的依据。在猜想过程中,学生可能得出的结论多样,这个时候针对不同的结论,如:圆锥体积是圆柱体积的二分之一;圆锥体积是圆柱体积的三分之一等。教师随即出示几个大小不同,且不等底等高的圆柱和圆锥让学生仔细观察,比如:大圆锥和小圆柱,或者底面积(高)相同,但是高(底面积)不相同的圆柱和圆锥。通过观察让学生发现高和底面积如果不相同,不能找到与圆锥的关系,因此只有圆柱和圆锥等底等高才便于我们研究。
步骤三:实验活动。在学生形成猜想后,再引导学生“验证说明”自己的猜想。展开分组活动,让学生参与操作实验,用一个空心的圆锥装满水或沙子倒入等底等高的圆柱容器中,看几次能倒满;然后再把圆柱中装满水或沙子倒入等底等高的圆锥容器中,需要倒几次才能倒完,并做好观察记录。让学生初步感知等底等高的圆柱和圆锥体积之间的关系。接着教师用一对等底等高的圆柱和圆锥。
圆锥的体积说课稿 篇2
一、说教材
(一)圆锥是小学几何初步知识的最后一个教学单元中的内容,是学生在学习了平面图形和长方体、正方体、圆柱体这三种立体图形的基础上进行研究的含有曲面围成的最基本的立体图形。由研究长方体、正方体和圆柱体的体积扩展到研究圆锥的体积,这是发展学生空间观念的内容。
内容包括理解圆锥体积的计算公式和圆锥体积计算公式的具体运用。学生掌握这些内容,不仅有利于全面掌握长方体、正方体、圆柱体和圆锥之间的本质联系、提高几何体知识掌握水平,为学习初中几何打下基础,同时提高了运用所学的数学知识和方法解决一些简单实际问题的能力。
(二)教学目标
1、通过实验,使学生理解和掌握圆锥体积公式,能运用公式正确地计算圆锥的体积2、培养学生的观察、操作能力和初步的空间观念,培养学生应用所学知识解决实际问题的能力。
3、渗透事物间相互联系的辩证唯物主义观点的启蒙教育。
(三)教学重点、难点和关键
重点:理解和掌握圆锥体积的计算公式。
难点:理解圆柱和圆锥等底等高时体积间的倍数关系。
关键:组织学生动手做实验,引导学生动脑、动手推导出圆锥体积的计算公式。
二、说教法
以谈话法、实验法为主,讨论法、读书指导法、练习法为辅,实现教学目标。教学中,既充分发挥学生的主体作用,调动学生积极主动地参与教学的全过程。
小学阶段学习的几何知识是直观几何。小学生学习几何知识不是严格的论证,而主要是通过观察、操作。根据课题的特点,主要采取让学生做实验的方法主动获取知识。主要引导学生做了三个实验。一是比较圆柱和圆锥是等底等高,强调圆柱和圆锥是等底等高这个必要条件;二是做在圆锥中倒的实验,使学生理解等底等高的圆柱和圆锥存在着一定的倍数关系;三是做在小圆锥里装满沙土往大圆柱中倒的实验,再次强调只有等底等高的圆柱和圆锥存在着的倍数关系,搞清了圆锥体积公式的由来,从而理解和掌握了圆锥体积公式,培养了学生的观察、操作能力和初步的空间观念,克服了几何形体计算公式教学中的重结论、轻过程,重记忆、轻理解,重知识、轻能力的弊病。突出了教学重点。
三、说学法
1、教学中充分发挥学生的主体作用。学生能做的尽量让学生自己做,学生能想的尽量让学生自己想,学生不能想的,教师启发、引导学生想,学生能说的尽量让学生自己说。学生的整个学习过程围绕着教师创设的问题情境之中。
2、学生学习圆锥体积公式的推导时,通过自己操作实验、观察比较、讨论小结、推导出圆锥的计算公式,从而初步学会运用实验的方法探索新知识。
四、说教学程序
(一)导入课题
1、让学生自己找出自己桌子上的圆柱体,指出它的底面和高。
回答:
(1)已知底面积和高怎样求它的.体积?
(2)已知底面半径、直径或周长又怎样求它的体积?
这样,学生可以利用迁移规律,从求圆柱体积的思路、方法中得到启示,领悟出求圆锥体积的方法。
2、让学生自己找出圆锥体,指出它的底面和高,同时引出课题:圆锥的体积
(二)讲授新知
1、(1)引入新课
引导学生回忆圆柱的体积计算公式是怎样推导的?想:圆锥的体积也能转化成学过的体积来计算吗?转化成哪种形体最合适?
(2)教学圆锥体积公式
首先,学生带着如下三个问题自学课文,(电脑出示):
(1)用什么方法可以得到计算圆锥体积的公式?
(2)圆柱和圆锥等底等高是什么意思?
(3)得出了什么结论?圆锥体积的计算公式是什么?
其次,学生操作实验,先让学生比较圆柱和圆锥是等底等高。再让学生做在圆锥中装满沙土往等底等高的圆柱中倒和在圆柱中装满沙土往等底等高的圆锥中倒的实验,得出倒三次正好倒满。使学生理解等底等高的圆柱和圆锥,圆锥的体积是圆柱体积的1/3,圆柱的体积是圆锥的3倍。
第三、小组讨论,全班交流,归纳,推导出圆锥体积的计算公式:V= 1/3Sh。
第四、让学生做在小圆锥里装满沙土往大圆柱中倒的实验,得出倒三次不能倒满。再次强调,只有等底等高的圆柱和圆锥才存在着一定的倍数关系。
第五、师生小结:圆锥的体积等于和它等底等高的圆柱体积的三分之一。
练习:
填空:(口答)(电脑出示)等底等高的圆柱和圆锥,圆锥的体积是15立方厘米,圆柱的体积是( )立方厘米,如果圆柱的体积是a立方厘米,圆锥的体积是( )立方厘米。
2、教学应用体积公式计算体积(电脑出示题目)
提高学习效率,掌握学习方法才能取得好的成绩,六年级数学下册说课稿的针对性很强,希望同学和老师都能够合理的使用!
圆锥的体积说课稿 篇3
一、说教材
1、本节教材是义务教育小学数学(苏教版)六年制第十二册第二单元《圆柱和圆锥》中《圆锥体积》的第一课时。教学内容为圆锥体积计算公式的推导、例五、相应的“试一试”及“练一练”。
2、本节教材是在学生已经掌握了圆柱体积计算及其应用和认识了圆锥的基本特征的基础上学习的,是小学阶段学习几何知识的最后一课时内容。让学生学好这一部分内容,有利于进一步发展学生的空间观念,为进一步解决一些实际问题打下基础。教材按照实验、观察、推导、归纳、实际应用的程序进行安排。
3、教学重、难点:
⑴教学重点:能正确运用圆锥体积计算公式求圆锥的体积;
⑵教学难点:理解圆锥体积公式的推导过程。
4、教学目标:
⑴知识方面:理解并掌握圆锥体积公式的推导过程,学会运用圆锥体积计算公式求圆锥的体积;
⑵能力方面:能解决一些有关圆锥的实际问题,通过圆锥体积公式的推导实验,增强学生的实践操作能力和观察比较能力;
⑶德育方面:通过实验,引导学生探索知识的内在联系,渗透转化思想,培养交流与合作的团队精神。
5、教、学具准备:
⑴教具准备:等底等高的圆柱、圆锥一对;
⑵学具准备:让学生分组制作等底等高的圆柱、圆锥若干对,准备一定量的细沙。
二、说教法
著名教育家布鲁纳说过:“教学不是把学生当成图书馆,而是要培养学生参与学习的过程。”学生是学习的主体,只有通过自身的实践、比较、思索,才能更加深刻地领略到知识的真谛。因此,我在设计教法时,根据本节几何课的特点,结合小学生的认知规律,采用以下几种教法:
1、实验操作法。波利亚说过:“学习任何知识的最佳途径是由自己去发现,因为这种发现理解最深,也最容易掌握其中的内在规律、性质和联系。”因此,我在学生已经认识圆锥的基础上,设计了一个实验:通过学生动手操作,用空圆锥盛满沙后倒入等底等高空圆柱中,发现“圆锥的体积等于和它等底等高的圆柱体积的三分之一”。利用实验法,为推导出圆锥的'体积公式发挥桥梁和启智的作用,有助于发展学生的空间观念,培养观察能力、思维能力和动手操作能力,为进一步学习,提供了丰富的感性材料,从而逐步从具体的操作过渡到内部语言。
2、比较法、讨论法、发现法三法优化组合。几何知识具有逻辑性、严密性、系统性的特点。因此,在做实验时,我要求学生运用比较法、讨论法、发现法得出结论:“圆锥的体积等于与它等底等高圆柱体积的三分之一。”然后,再让学生讨论假如这句话中去掉“等底等高”这几个字还能否成立,并让学生理解“等底等高”的重要意义,得出结论:不是所有的圆锥体积都是圆柱体积的三分之一,从而加深了“等底等高”这个重要的前提条件。
三、说学法
“人人学有价值的数学,人人都能获得必要的数学,不同的人在数学上得到不同的发展”是新世纪数学课程的基本理念。新课程标准还强调引导学生主动参与、亲自实践、独立思考、合作探究,改变单一的记忆、接受、模仿的被动学习方式。因此,我在讲求教法的同时,更重视对学生学法的指导。
1、实验转化法
有些知识单凭解说是无法让学生真正理解的,只有通过实验,才能深刻领悟其中的内在奥秘。在指导学生进行实验操作时,我着重从三个方面进行引导:首先,让学生做好操作的准备,也就是各自准备好等底等高的圆柱、圆锥一对,一定量的沙;其次,告诉他们操作的方法、步骤和注意点;第三,引导学生在操作中比较、发现、总结。这样,通过实验操作推导得出圆锥的体积公式,培养了学生观察比较、交流合作、概括归纳等能力。
2、尝试练习法
苏霍姆林斯基认为:“成功的欢乐是一种巨大的情绪力量,它可以促进儿童好好学习的愿望。”本节课在学习例五时,放手让学生尝试自己自己去发现、总结、归纳,挖掘学生的潜能,让他们体验学习成功的乐趣,调动学生学习的积极性和主动性,发挥学生的主体作用,养成良好的学习习惯。
四、说教学程序
本节课我设计了以下四个教学程序:
1、谈话导入
⑴出示圆柱:如果想知道这个容器的容积,怎么办?
⑵出示圆锥:如果想知道这个容器的容积,怎么办?
2、教学例五
⑴引导观察:这个圆柱和圆锥有什么相同的地方?
⑵估计一下:这个圆锥的体积是圆柱体积的几分之几?
⑶讨论:可以用什么方法来验证你的估计?
⑷分组验证;引导学生用适合的方法进行操作验证。
⑸交流:说说自己小组是怎么验证的,得到的结论是什么?
⑹讨论:
①通过实验,我们知道这个圆锥的容积是这个圆柱容积的三分之一,那能不能说圆锥的体积就是圆柱的体积的三分之一?为什么?应该怎么说才准确?
②那怎么算出这个圆锥的容积呢?
③推导出圆锥体积的公式。
④如果已知r和h圆锥体积公式还可以怎样计算?如果已知d和h圆锥体积公式怎样计算?
⑺完成“试一试”。
3、巩固练习
做“练一练”。
4、归纳总结
通过本节课你有什么收获?有哪些问题需要我们今后注意?
圆锥的体积说课稿 篇4
圆锥的体积说课稿(精选13篇)
作为一位杰出的教职工,通常会被要求编写说课稿,说课稿是进行说课准备的文稿,有着至关重要的作用。怎样写说课稿才更能起到其作用呢?下面是小编为大家整理的圆锥的体积说课稿,欢迎大家借鉴与参考,希望对大家有所帮助。