商的变化规律教案

欢迎阅读商的变化规律教案(精选5篇),内容由多美网整理,希望对大家有所帮助。

商的变化规律教案 篇1

知识与技能:

1、学生通过观察,能够发现并总结商的变化规律。

2、会灵活运用商的变化规律。

3、培养学生用数学语言表达数学结论的能力

过程与方法:使学生经历引导学生思考发现商的变化规律的过程,灵活运用商的变化规律。

情感、态度和价值观:

培养学生初步的抽象、概括能力及善于观察、勤于思考、勇于探索的良好习惯。

重点引导学生自己发现并总结商的变化规律。

难点引导学生自己发现并总结商的变化规律。

教具

xx图片

教学过程

一、故事导入

安排老猴子分桃子的故事

1、8个桃子分2天吃完,16个桃子分4天吃完,32个桃子分8天吃完,64个桃子分16天吃完。(将数字板书在黑板上)

2、提问:老猴子运用了什么知识教育了小猴子?今天我们一起来研究一下。

二、探究新知

1、提问:观察数字,你发现了什么?你怎么知道的?

学生说方法,教师板书。

8÷2=4

16÷4=4

32÷8=4

64÷16=4

2、我们分别用第2、3、4式与第1个算式进行比较,你发现了什么?

被除数、除数分别都乘以一个相同的数。(扩大)

3、教师带领学生分别比较。

4、提问:谁能给我们总结一下,你发现了什么?

5、学生讨论,并发现:

在除法里,被除数、除数同时扩大相同的倍数,商不变。(教师板书)

6、提问:为什么说是“同时”,“相同”?可以举例子来证明

7、我们分别用第1、2、3式与第4个算式进行比较,你又发现了什么?

被除数、除数分别都除以一个相同的数。(缩小)

8、通过观察,谁能再给我们总结一下,你发现了什么?

在除法里,被除数、除数同时扩大(或缩小)相同的倍数,商不变。

板书课题:商的变化规律

三、总结:

提问:通过观察,我们发现了除法里有商的变化规律,那么谁能说说你觉得这个规律需要我们注意的有哪些?

你们看我这样写对吗?为什么?

48÷12=(48×0)÷(12×0)

让学生判断。

四、巩固练习:书P87“做一做”

五、总结

在运用商的变化规律时,一定要注意什么?(“同时”,“相同”。)

六、作业:练习十七第6题、9题。

商的变化规律教案 篇2

商的变化规律教案(通用13篇)

作为一名辛苦耕耘的教育工作者,就不得不需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。我们该怎么去写教案呢?以下是小编精心整理的商的变化规律教案,希望能够帮助到大家。

商的变化规律教案 篇3

一、教学目标

(一)知识与技能

引导学生理解和掌握商不变的规律,并能运用这个规律进行相关的计算。培养学生初步的观察、概括的能力。

(二)过程与方法

引导学生经历提出猜想、举例验证、得出结论、实际应用的学习过程,使学生理解商不变的规律的同时获得研究问题的方法。

(三)情感态度和价值观

在主动参与数学活动的过程中获得成功的体验,渗透“变与不变”的函数思想和科学的研究态度。

二、教学重难点

教学重点:理解和掌握商不变的规律,获得探索规律的经验和方法。

教学难点:用数学语言表达思考的研究过程,归纳概括商不变的规律。

三、教学准备

课件

四、教学过程

(一)创设情境,建立知识网络

1.创设数学情境,复习旧知

师:做个小游戏,看看谁算得又快又好?

6×2= 6×20= 6×200= 6×20xx=

师:你们算得可真快,用到了我们学过的什么知识?

(一个因数不变,另一个因数乘或除以一个数,积同时乘或除以相同的数。)

师:咱们还学过什么相关的知识?

(积不变的规律)

师:怎样可以保证积不变呢?

(一个因数乘或除以一个数,另一个因数除以或乘相同的数(零除外)积不变。)

师:大家还想到了我们学过的什么知识?

学习除法时,我们又发现了商变化的规律,这种情况下,商是怎样变化的呢?

(被除数不变,除数乘或除以一个数(0除外),商反而除以或乘相同的数。)

除数不变,被除数乘或除以一个数(0除外),商也乘或除以相同的数。

【设计意图】以数学知识本身的联系为载体,创设数学情境。对前面学习的知识进行了归纳和整理,建立知识网络,帮助学生整体把握知识,沟通了知识间的内在联系。通过类比、联想,学生初步感悟了“变化中的不变”“不变中的变化”的函数思想。

2.依托知识网络,激发联想

师:这是我们已经掌握的积变化的规律、积不变的规律、商变化的规律,根据这些你想到了什么?

(商也可以不变)

师:怎么会想到商有不变的规律呢?

(积有不变的规律,商就应该有不变的规律。)

师:还可以怎样想?

师:看来我们的猜想需要一定的依据,到底怎样使商不变,今天我们就一起来研究商不变的规律。

板书:商不变的规律

【设计意图】以知识间的内在联系为依托,培养学生推理能力和提出问题的能力。

(二)积累经验,掌握研究方法

1.依据联系,提出猜想

(1)遇到新问题或不会的,我们怎么办呀?——想会的。

咱们一起再来看看已经掌握的这些知识。

(2)想一想,我们学过的这些规律,有什么共同的特点?

(都是三个量 两个量变,一个量不变)

今天研究的就是商不变,那两个量呢?

板书:被除数? 除数? 商不变

师:被除数和除数是随便变吗?

(要有规律的变)

(3)师:根据你前面学习的经验,具体地说说被除数、除数怎样有规律的变化,才能保证商不变?

板书:被除数乘一个数,除数除以相同的数,商不变

被除数除以一个数,除数乘相同的数,商不变

被除数乘一个数,除数同时乘相同的数,商不变

被除数除以一个数,除数同时除以相同的数,商不变

【设计意图】根据以往的知识基础和数学学习经验,引导学生更加具体的猜想,培养合情推理能力和提出问题的能力。

2.自主探究,举例验证

(1)举例方法指导

师:这么多种猜想,到底哪种猜想成立呢?有点儿难,怎么办呢?

(举些例子来验证猜想。)

板书:验证

师:怎么验证?

(举一些例子。)

师:举什么样的例子?然后怎么办呀?

【设计意图】列举出了这么多种猜想,学生知道要证明猜想是否成立需要列一些算式来进行举例验证,但是如何列算式对于学生来说是比较困难的,在举例验证前,设计了问题串,给学生提供了举例方法的指导。

(2)自主探究,填写研究报告

学习建议

师:同学们手里都有一个研究报告单,先选一条猜想,然后再举例子来验证,最后看看你验证的猜想是否成立?

【设计意图】充分挖掘学生的潜力,以研究报告为抓手,培养学生自主学习、自主探究的学习能力。为今后探究这类问题提供研究方法。

(3)个人汇报,合作交流

①先验证不成立的猜想

师:他验证的是哪一条?看懂他的意思了吗?请这位同学来讲一讲。

谁也验证的是这一条?成立吗?一个反例够吗?

②再验证成立的猜想

师:他验证的是哪一条?看懂他的意思了吗?说说你是怎样验证的?

师:一个例子能证明猜想一定成立吗?

再看看他的例子?

还有谁也验证的是这一条?说明什么?

师:这些例子符合这个规律,说明猜想成立。

师:咱们用黑板上的这组算式来验证,应该怎么看呢?谁愿意像老师这样标一标?讲一讲?还有机会吗?

【设计意图】培养推理能力、表达能力和严谨科学的研究态度,学生在动态的举例中感知商不变的规律,这个过程就是函数动态的过程,渗透函数思想。

学生体会到“证明一个猜想不成立的时候,我们只需要举出一个反例就可以了”, “证明一种猜想成立的时候,我们就需要举出大量的例子来验证,这样得到的结论才具有普遍性。”使学生的思想得到了进一步升华。

3.归纳概括,得到结论

(1)把成立的两条猜想小声地读一读。

能把这两句话合成一句话吗?

同桌同学互相说说。(板书归纳)

(2)追问为什么0除外呢?

在什么地方应用到了商不变的规律呢?

4.应用练习

(1)780÷30,可以怎样解答?

预设:用除数是整十数的笔算方法解决的。

师:有同学是这样做的。

出示:

师:这样做对吗?为什么?

学生讨论反馈

预设:可以,因为利用了商不变的规律,被除数和除数同时除以10,商不变,这样做可以使计算更简便。

(2)120÷15

师:这道题我们可以怎样解决?

预设:用除数是两位数的笔算方法解决的。

师:利用今天学习的商不变的规律能不能解决这道题?

出示:

120÷15

=(120 × 4)÷(15 × 4)

=480÷60

=8

师:被除数和除数为什么都乘4?

生:根据被除数和除数的特点以及商不变的规律,可以直接口算解决。

5.讨论余数

840÷50

师:利用商不变的规律,我们可以列这样的竖式。

出示

师:有的同学认为余数是4,有的同学认为余数是40,到底是多少?为什么?

生:是40,根据商不变的规律,把这道题转化为84个十除以5个十,所以余下的是几个十。

【设计意图】在对比中使学生切实了解到计算过程既有一般方法,又有灵活处理之处,怎样简便就怎样算。

(三)巩固练习,深化认识理解

1.口算应用,加深理解

下面的题你会算吗?怎么算的?

120÷30= 6300÷700=

通过今天的学习,你知道这样做的道理了吗?

商不变的规律在除法口算中已经用过,在今后的学习中还会继续应用。

2.顺应结构,建立模型

(四)回顾历程,产生新的思考

1.咱们回顾一下研究的过程。

2.是什么引发了我们今天的猜想?

因为知识之间的内在联系,引发了我们今天的猜想。

3.把四个规律放在一起看,他们有什么共同的特点?

4.补充知识网络(商不变的规律)

乘法、除法里存在这样的规律,你又想到了什么?

今天的学习,使同学们产生了新的思考,老师真为你们高兴。回去后可以用今天研究问题的方法,自己去探究新问题。

商的变化规律教案 篇4

一、解读教材:

《商的变化规律》一课属于比较传统的知识,它是在学生学习了笔算乘法、除法的基础上进行教学的。与旧教材相比,教材对本知识点作了适当调整:旧教材中只研究了商不变的规律,而新教材中却改为了商的变化规律,引导学生探讨被除数不变商随除数变化的规律和除数不变商随被除数变化的规律,提升了学生自由探究数学问题的空间,因此颇具挑战性。那么老师怎样做到“老课新上”?做到在“主动教育”模式下始终让学生成为课堂教学活动中的小主人,怎样在自主活动中发现问题、探索问题、解决问题以及主动优化,努力实现数学课堂的真正高效?基于以上几点,我们的教学策略定为:扶放结合、引导探索、自主参与、学会学习、培养能力。

二、课堂呈现:

在课堂呈现上余老师紧紧地把握住了以下三点:

1、“问题生成单”是主动教育课堂的“魂”。

我校的“主动教育”教学模式的基石是“问题生成单”,我们在设计本节课之处就始终用“问题生成单”作为课堂的主线,经历试教之处的时间不够用、教学环节不够精简、课堂探究不够深入、课堂效率不够高效等问题后,我们对预习生成单进行了再次设计,将教材中简单、静态、结果性的文本,设计成为丰富、生动、过程化的“问题生成单”,让问题生成单成为整堂课的“魂”。在整堂课中,“问题生成单”分三次呈现。

第一次呈现:在开课环节,教师设计了第一层次的旧知复习,用积的变化规律旧知为新知搭桥铺垫,为探讨除法中商的变化规律起到了方法上的迁移。

第二次呈现:教师要求学生根据问题生成单研究当被除数不变时,研讨除数变商会怎样?除数不变,商会随着被除数的变化而发生怎样的变化,起到了为学生分散难点的目的。

第三次呈现:老师要求学生根据第二次的呈现,对被除数、除数都变,商会怎样变进行合理猜想。

一张小小的问题生成单凝聚着老师课前精心解读教材的心血,三次精彩的呈现为学生提供了探究的空间,使学生为完成一定任务而进行设想、预见、磋商、探究、讨论、辩解,思维发生碰撞,构筑了课堂上有活力、有价值的教学资源,成为了主动教育的“魂”,进而促进学生在有限的40分钟课堂里获得了最高效的主动发展。

2、“学生自主探究”成为了主动教育课堂的“根”。

“让过程和方法进课堂”可谓余老师上课的特色。整节课余老师非常注重培养学生在学习过程中对数学问题的探究,体现了学生的主动和教师的主导,师生和谐共荣,极符学生的认知规律、新课程标准和我校主动教育模式要求。课堂上我们看到教师始终把激励学生学习、为学生搭建学习的平台作为教学的主线,让小组中的每个学生都在宽松的氛围中,始终处于一种积极求知、好学向上的状态,奠定了学好数学信心的基础;同时重视合作、探究,使得学生愿意与伙伴交流,敢于自由表达自己的想法,在参与中体验到学习的乐趣。

课堂上一次次探究活动真正成为师生互动、生生互动,共同发展的数学活动过程,使学生在课堂上有了自主,有了发扬个性、施展才能的空间,成为了主动教学的“根”。

3、“学生自主构建、归纳、总结、提炼”, 成为主动教育课堂新的增长点!

课堂中余老师紧紧抓住探究三条规律的过程,注重让学生构建思考问题的方法,启发学生有序观察,多角度、多方向去挖掘思路,引导学生参与到发现规律、探究规律、总结规律的过程中。在学生发现商的变化有某种规律的萌动时,余老师鼓励学生:“用自己的话讲一讲发现的规律。”并及时给予肯定,让学生在观察、比较、思考、尝试中,实现师生互动、生生互动,激活了学生主动参与获取知识的过程。

整节课教师下放“教学”,只作点拔,成为活动的组织者,巧妙设疑,引导学生去发现问题,解决问题,拓展他们的解题思路,既重视学生独立思考的过程,又重视发挥集体的智慧,给学生提供了多向交流的机会。学生在静思、合作、商讨中,轻松、愉快地学到知识,增长本领,从而达到乐学、会学、创造学的境界。

本课在探究新知的过程中,亦学亦练,注重了知识的生成与巩固,学与练相得益彰。同时教师非常注重总结性的语言,能适时地把学生表达的变化规律的用语,加以提炼并呈现给学生,使学生在全面了解商的变化规律的同时,又培养了学生用数学语言表达数学规律能力。

三、不足之处:

1、“积”、“商”是一对矛盾的统一体,学生极易混淆,建议可先复习乘法、除法的概念及算式各部分名称,做好知识储备,便于学生表述规律。

2、教师还应加强指导学生表述完整的练习,同时要适时引导、及时纠正,比如学生总结第一个规律时,说被除数不变,除数扩大(或缩小)几倍,商就扩大或缩小几倍。

主动教育是一种教育思想,教育策略,教育艺术,教育境界。教师大胆地把舞台和空间让给学生,把自己隐蔽起来,让学生充分发挥其主动性,这样,课堂就绽放出空灵之美。当然,“冰冻三尺非一日之寒”!模式的创新、思维的转变,也都不是一蹴而就的过程。我们也从这节课中看到了自身许多的不足。

创新终归出于实践,期待在以后的实践中与我们的孩子们共同转变、携手同行!正如我校“主动教育”教学理念中提出的“关注学生兴趣,兴趣焕发生命精彩;关注学生习惯,习惯影响学生未来;关注学生质疑,质疑引发智慧觉醒。”

商的变化规律教案 篇5

教学目标:

1、使学生结合具体情境,通过计算、观察、比较,发现商随除数(或被除数)变化而变化的规律,并在此基础上放手探讨商不变的规律。

2、培养学生初步的抽象概括能力和用数学语言表达数学结论的能力。

3、使学生体会数学来自生活实际的需要,进一步产生对数学的好奇心与兴趣。

教学重点:发现规律,掌握规律

教学难点:利用商的变化规律进行简便计算。

教学准备:课件,实物投影

教学过程:

一、谈话导入,揭示新课

师:同学们,来到阶梯教室,能和四(1)班的同学们在阶梯教室上课,我非常高兴,因为我班学生个个都是最棒的,上课认真,思维敏捷,发言积极。这节课曾老师将带大家一起探索数学的奥秘,有没有信心把它学好?

师:先来一场热身赛,快速抢答。预备开始。

2000= 20020= 168= 20040= 1608= 3208= 142=56080= 28040=

师:同学们算得既对又快,注意观察这些算式,你能把它们分类吗?

师:依据是什么?(按被除数不变、除数不变、商不变。)

二、探究体验,建构新知

(一)、被除数不变时,商的变化规律。

师:我们先来观察第一组算式,你发现了什么变了,什么没变?(被除数不变,除数和商有变化。)

师:从上往下看,除数和商有什么变化?(被除数不变,除数扩大,商反而缩小。)

从下往上看,除数和商有什么变化?(被除数不变,除数缩小,商反而扩大。)

师总结:被除数不变,除数扩大(或缩小),商反而缩小(扩大)。

师:继续观察除数和商的扩大、缩小有什么规律呢?

②式与①④比(除数乘10扩大了,商反而除以10缩小了。)

③式与②式比(除数乘2扩大了,商反而除以2缩小了。)

小结:被除数不变,除数乘几,商反而除以几。

②式与③式比(除数除以2缩小了,商反而乘2扩大了。)

① 式与②式比(除数除以10缩小了,商反而乘10扩大了。)

小结:被除数不变,除数除以几,商反而乘几。

师:谁能完整地说一说,当被除数不变,商的变化规律?

【被除数不变,除数乘几(或除以几),商反而除以几(或乘几)】

师实物讲解,平台展示。

练习:

11 21

231 33 = 7

77 3

(二)除数不变时,商的变化规律。

课件出示:

1、 什么变了,什么没变?

2、 商随着谁的变化而变化?怎么变的?

3、 它们的变化有规律吗?

讨论、交流、汇报结论:

除数不变,被除数乘几(或除几),商也乘几(或除几)。

练习:

132 11

26412 = 22

1320 110

(三)商的不变规律。

师:刚才同学们通过计算、观察、比较、讨论、总结出了商的变化规律。你们再想一想、猜一猜如果要商不变,被除数、除数会发生什么变化了?

师:同学们说对了吗?同学们可以带着以下问题通过计算、观察、比较、讨论等方法自己研究研究。

1、什么变了,什么没变?

2、商随着谁的变化而变化?怎么变的?

3、它们的变化有规律吗?

汇报交流。

师:被除数、除数同时乘(或除以)相同的数,这个数是0可以吗?

师:在这一条规律中要注意些什么?(同时、相同的数)

师:谁会完整地说一说商不变规律呢?

被除数和除数同时乘(或除以)相同地数,(0除外),商不变。大家一起读一读。师:通过大家认真的观察、比较,同学们发现了商随被除数、除数的变化而发生变化的规律,这就是今天学习的内容。(板书课题:商的变化规律)

4、练习

729=8

72090=

7200900=

三、应用练习,拓展提升

1、看谁算得又对又快?

6300700= 8100300= 280020=

2、谁是它的朋友。(用线段连接)

32080 18060

1800600 16040

36060 3200800

3、思考题,填空。

(1)12030=(1203)(30□)

(2)6012=(602)(12○2)

(3)20040=(200□)(40○5)

(4)15050=(150○□)(50○□)

四、课堂小结

1、这节课你有什么收获?

2、课后拓展:你能把今天所学的商的变化规律与积的变化规律对比,看看它们之间有什么联系和不同点?

大家都在看