不等式的性质教案

欢迎阅读不等式的性质教案(精选4篇),内容由多美网整理,希望对大家有所帮助。

不等式的性质教案 篇1

教学目标

1、经历通过类比、猜测、验证发现不等式性质的探索过程,掌握不等式的性质;

2、初步体会不等式与等式的异同;

3、通过创设问题情境和实验探究活动,积极引导学生参与数学活动,提高学习数学的兴趣,增进学习数学的信心,体会在解决问题的过程中与他人交流合作的重要性.

教学难点 :正确运用不等式的性质。

知识重点: 理解并掌握不等式的性质。

教学过程:

(师生活动) 设计理念提出问题 教师出示天平,并请学生仔细观察老师的操作过程,回答下列问题:

1、天平被调整到什么状态?

2、给不平衡的天平两边同时加人相同质量的砝码,天平会有什么变化?

3、不平衡的天平两边同时拿掉相同质量的砝码,天平会有什么变化?

4、如果对不平衡的天平两边砝码的质量同时扩大相同的倍数,天平会平衡吗?缩小相同的倍数呢? 通过天平演示,结合自己的观察和思考,让学生感受生活中的不等关系。

探究新知 1、用或填空.

(1)-1 3 -1+2 3+2 -1-3 3-3

(2) 5 3 5+a 3+a 5-a 3-a

(3) 6 2 65 25 6(-5)2(-5)

(4) -2 3(-2)6 36

(-2)(-6) 3(一6)

(5)-4 -6 (-4)2(-6)2

(-4)十(-2) (-6)十(-2)

2、从以上练习中,你发现了什么?请你再用几个例子试一试,还有类似的结论吗?请把你的发现告诉同学们并与他们交流.

3、让学生充分发表发现,师生共同归纳得出:

不等式性质1:不等式两边都加上(或减去)同一个数(或式子),不等号的方向不变.

不等式性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.

不等式性质3:不等式两边都乘(或除以)同一个负数,不等号的方向改变.

4、你能说出不等式性质与等式性质的相同之处与不同

之处吗? 通过动手、动口、动脑,引导学生运用类比、归纳的.数学思想去探究问题,在品尝成功的喜悦中激发出学数学的兴趣。

渗透类比思想。

探究新知 4、 下列哪些是不5、 等式x+3 6的解?哪些不6、 是?

-4,-2. 5,0,1,2.5,3,3.2,4.8,8,12

2、直接想出不等式的解集,并在数轴上表示出来:

(1)x+3 6(2)2x 8(3)x-2 0

巩固新知 1、 判断

(1)∵a b a-b b-b

(2)∵a b

(3)∵a b -2a -2b

(4)∵-2a 0 a 0

(5)∵-a 0 a 3

2、 填空

(1)∵ 2a 3a a是 数

(2)∵ a是 数

(3)∵ax a且 x 1 a是 数

3、 根据下列已知条件,4、 说出a与b的不5、 等关系,6、 并说明是根据不7、 等式哪一条性质。

(1)a-3 b-3 (2)

(3)-4a -4b 设置这几个练习,既可以培养学生独立思考的能力,又可强化对概念的理解,使学生真正认识不等式的性质。

总结归纳

在学生自己总结的基础上,教师应强调两点:

1、等式性质与不等式性质的不同之处;

2、在运用不等式性质3时应注意的问题. 学生通过总结,可以帮助自

己从整体上把握本节课所学知

识,培养良好的学习习惯,也为

下节课学好解不等式打下基础。

小结与作业

布置作业 1、必做题:教科书第134页习题9.1第4、5题

2、选做题:教科书第134页习题9. 1第7题.

3、备选题:

本课教育评注(课堂设计理念,实际教学效果及改进设想)

本节课设计旨在让学生经历通过实验、猜测、验证,发现不等式性质的探索过程.用类比和实验探究法作为主要方法贯穿整个课堂教学之中,并以多媒体作为辅助教学手段.让学生充分进行讨论交流,在自主探索和合作学习中掌握不等式的性质.这样就能有效地突破本节课的难点,为学生今后的学习打下坚实的基础.

教学过程中贯穿了一条创设情境,引出新知实验讨论,得出性质探究辨析,突破难点运用性质,解决问题的线索,使学生真正成为学习的主人.在师生交流合作中营造互动的氛围,让学生积极主动地参与教学的整个过程,使他们的学习态度、情感意志和个性品质等都得到不同程度的提高.

为了突破教学难点,让学生能熟练准确地运用不等式性质3,本课设计了多样化的练习以巩固所学知识.在学生回答、板演、讨论的过程中,课堂气氛被激活,教学难点被突破,使学生在轻松愉快的氛围中扎实地掌握性质并灵活运用.同时,学习伙伴之间进行了思维的碰撞和沟通.

不等式的性质教案 篇2

探究活动

能得到什么结论

题目已知且,你能够推出什么结论?

分析与解:由条件推出结论,我们可以考虑把已知条件的变量范围扩大,对已知变量作运算,运用不等式的性质,或者跳出不等式去考虑一般的数学表达式。

思路一:改变的范围,可得:

1.且;

2.且;

思路二:由已知变量作运算,可得:

3.且;

4.且;

5.且;

6.且;

7.且;

思路三:考虑含有的数学表达式具有的性质,可得:

8.(其中为实常数)是三次方程;

9.(其中为常数)的图象不可能表示直线。

说明从已知信息能够推出什么结论?这是我们经常需要思考的问题,这里给出的都是必要非充分条件,读者可以考虑是否能够写出充要条件;另外,运用推出关系的传递性,在推出结论的基础上进一步进行推理,还可得出很多结果,请读者考虑.

探究关系式是否成立的问题

题目当成立时,关系式是否成立?若成立,加以证明;若不成立,说明理由。

解:因为,所以,所以,所以,所以或

所以或

所以或

所以不可能成立。

说明:像本例这样的探索题,题目的结论是“两可”(即两种可能性)情形,而我们知道,说明结论不成立可像例1那样举一个反例就可以了。不过像本例的执果索因的`分析,不仅说明结论不成立,而且得出,必须同时大于1或同时小于1的结论。

探讨增加什么条件使命题成立

例适当增加条件,使下列命题各命题成立:

(1)若,则;

(2)若,则;

(3)若,则;

(4)若,则

思路分析:本例为条件型开放题,需要依据不等式的性质,寻找使结论成立时所缺少的一个条件。

引申发散对命题(3),能否增加条件,或,使其成立?请阐述你的理由。

不等式的性质教案 篇3

第四课时

教学目标

1.掌握分析法证明不等式;

2.理解分析法实质——执果索因;

3.提高证明不等式证法灵活性.

教学重点分析法

教学难点分析法实质的理解

教学方法启发引导式

教学活动

(一)导入新课

(教师活动)教师提出问题,待学生回答和思考后点评.

(学生活动)回答和思考教师提出的问题.

[问题1]我们已经学习了哪几种不等式的证明方法?什么是比较法?什么是综合法?

[问题2]能否用比较法或综合法证明不等式:

[点评]在证明不等式时,若用比较法或综合法难以下手时,可采用另一种证明方法:分析法.(板书课题)

设计意图:复习已学证明不等式的方法.指出用比较法和综合法证明不等式的不足之处,激发学生学习新的证明不等式知识的积极性,导入本节课学习内容:用分析法证明不等式.

(二)新课讲授

【尝试探索、建立新知】

(教师活动)教师讲解综合法证明不等式的逻辑关系,然后提出问题供学生研究,并点评.帮助学生建立分析法证明不等式的知识体系.投影分析法证明不等式的概念.

(学生活动)与教师一道分析综合法的逻辑关系,在教师启发、引导下尝试探索,构建新知.

[讲解]综合法证明不等式的逻辑关系:以已知条件中的不等式或基本不等式作为结论,逐步寻找它成立的必要条件,直到必要条件就是要证明的不等式.

[问题1]我们能不能用同样的思考问题的方式,把要证明的不等式作为结论,逐步去寻找它成立的充分条件呢?

[问题2]当我们寻找的充分条件已经是成立的不等式时,说明了什么呢?

[问题3]说明要证明的不等式成立的理由是什么呢?

[点评]从要证明的结论入手,逆求使它成立的充分条件,直到充分条件显然成立为止,从而得出要证明的结论成立.就是分析法的逻辑关系.

[投影]分析法证明不等式的概念.(见课本)

设计意图:对比综合法的逻辑关系,教师层层设置问题,激发学生积极思考、研究.建立新的知识;分析法证明不等式.培养学习创新意识.

【例题示范、学会应用】

(教师活动)教师板书或投影例题,引导学生研究问题,构思证题方法,学会用分析法证明不等式,并点评用分析法证明不等式必须注意的问题.

(学生活动)学生在教师引导下,研究问题,与教师一道完成问题的论证.

例1求证

[分析]此题用比较法和综合法都很难入手,应考虑用分析法.

证明:(见课本)

[点评]证明某些含有根式的不等式时,用综合法比较困难.此例中,我们很难想到从“”入手,因此,在不等式的证明中,分析法占有重要的位置,我们常用分析法探索证明途径,然后用综合法的形式写出证明过程,这是解决数学问题的一种重要思维方法,事实上,有些综合法的表述正是建立在分析法思索的基础上,分析法的优越性正体现在此.

例2已知:,求证:(用分析法)请思考下列证法有没有错误?若有错误,错在何处?

[投影]证法一:因为,所以、去分母,化为,就是.由已知成立,所以求证的不等式成立.

证法二:欲证,因为

只需证,即证,即证

因为成立,所以成立.

(证法二正确,证法一错误.错误的原因是:虽然是从结论出发,但不是逐步逆战结论成立的充分条件,事实上找到明显成立的不等式是结论的必要条件,所以不符合分析法的逻辑原理,犯了逻辑上的错误.)

[点评]①用分析法证明不等式的逻辑关系是:

(结论)(步步寻找不等式成立的充分条件)(结论)

分析法是“执果索因”,它与综合法的证明过程(由因导果)恰恰相反.②用分析法证明时要注意书写格式.分析法论证“若A则B”这个命题的书写格式是:

要证命题B为真,只需证明为真,从而有……

这只需证明为真,从而又有……

……

这只需证明A为真.

而已知A为真,故命题B必为真.

要理解上述格式中蕴含的逻辑关系.

[投影]例3证明:通过水管放水,当流速相同时,如果水管截面(指横截面,下同)的周长相等,那么截面是圆的水管比截面是正方形的水管流量大.

[分析]设未知数,列方程,因为当水的流速相同时,水管的流量取决于水管截面面积的大小,设截面的周长为,则周长为的圆的半径为,截面积为;周长为的正方形边长为,截面积为,所以本题只需证明:

证明:(见课本)

设计意图:理解分析法与综合法的内在联系,说明分析法在证明不等式中的重要地位.掌

握分析法证明不等式,特别重视分析法证题格式及格式中蕴含的逻辑关系.灵活掌握分析法的应用,培养学生应用数学知识解决实际问题的能力.

【课堂练习】

(教师活动)打出字幕(练习),请甲、乙两位同学板演,巡视学生的解题情况,对正确的证法给予肯定,对偏差及时纠正.点评练习中存在的问题.

(学生活动)在笔记本上完成练习,甲、乙两位同学板演.

【字幕】

练习1.求证

2.求证:

设计意图:掌握用分析法证明不等式,反馈课堂效果,调节课堂教学.

【分析归纳、小结解法】

(教师活动)分析归纳例题和练习的解题过程,小给用分析法证明不等式的解题方法.

(学生活动)与教师一道分析归纳,小结解题方法,并记录笔记.

1.分析法是证明不等式的一种常用基本方法.当证题不知从何入手时,有时可以运用分析法而获得解决,特别是对于条件简单而结论复杂的题目往往更是行之有效的.

2.用分析法证明不等式时,要正确运用不等式的.性质逆找充分条件,注意分析法的证题格式.

设计意图:培养学生分析归纳问题的能力,掌握分析法证明不等式的方法.

(三)小结

(教师活动)教师小结本节课所学的知识.

(学生活动)与教师一道小结,并记录笔记.

本节课主要学习了用分析法证明不等式.应用分析法证明不等式时,掌握一些常用技巧:

通分、约分、多项式乘法、因式分解、去分母,两边乘方、开方等.在使用这些技巧变形时,要注意遵循不等式的性质.另外还要适当掌握指数、对数的性质、三角公式在逆推中的灵活运用.理解分析法和综合法是对立统一的两个方面.有时可以用分析法思索,而用综合法书写证明,或者分析法、综合法相结合,共同完成证明过程.

设计意图:培养学生对所学知识进行概括归纳的能力,巩固所学知识.

(四)布置作业

1.课本作业:P174、5.

2.思考题:若,求证

3.研究性题:已知函数,若、,且证明

设计意图:思考题供学有余力同学练习,研究性题供学生研究分析法证明有关问题.

(五)课后点评

教学过程是不断发现问题、解决问题的思维过程.本节课在形成分析法证明不等式认知结构中,教师提出问题或引导学生发现问题,然后开拓学生思路,启迪学生智慧,求得问题解决.一个问题解决后,及时地提出新问题,提高学生的思维层次,逐步由特殊到一般,由具体到抽象,由表面到本质,把学生的思维步步引向深入,直到完成本节课的教学任务.总之,本节课的教学安排是让学生的思维由问题开始,到问题深化,始终处于积极主动状态.

本节课练中有讲,讲中有练,讲练结合.在讲与练的互相作用下,使学生的思维逐步深化.教师提出的问题和例题,先由学生自己研究,然后教师分析与概括.在教师讲解中,又不断让学生练习,力求在练习中加深理解,尽量改变课堂上教师包括办代替的做法.

在安排本节课教学内容时,按认识规律,由浅入深,由易及难,逐渐展开教学内容,让学生形成有序的知识结构.

作业答案:

思考题:

.因为,故,所以成立.

研究性题:令,则:

,故原不等式等价于

由已知有.。所以上式等价于,即。所以又等价于.因为,上式成立,所以原不等式成立。

不等式的实际解释

题目:不等式:是正数,且,则。可以给出一个具有实际背景的解释:在溶液里加溶质则浓度增加,即个单位溶液中含有个单位的溶质,其浓度小于加入个单位溶质后的溶液浓度,请你仿照此例,给出两个不等式的解释。

分析与解

1.先看问题中的不等式,建筑学规定,民用住宅的窗户面积必须小于地板面积,但按采光标准,窗户面积与地板面积的比值应不小于10%,并且这个比值越大,住宅的采光条件越好。我们知道如果同时增加相等的窗户面积和地板面积,那么住宅的条件变好。

设地板面积为平方米,窗户面积为平方米,若窗户面积和地板面积同时增加相等的平方米,住宅的采光条件变好了,即有

2.是正数,不等式可以推出,我们可以用混合溶液来解释:两个不同浓度的溶液混合后,其浓度介于混合前两溶液浓度之间。

3.电阻串并联。电阻值为、的电阻,串联电阻为,并联电阻为,串联电阻变大,并联电阻变小,因此有不等式,即

说明许多数学结论是由实际问题抽象为数学问题后,通过数学的运算演变得到的。反过来,把抽象的数学结论还原为实际解释也是一种数学运用,值得大家关注。

不等式的性质教案 篇4

不等式的性质教案

作为一名辛苦耕耘的教育工作者,时常需要用到教案,教案是实施教学的主要依据,有着至关重要的作用。优秀的教案都具备一些什么特点呢?下面是小编为大家整理的不等式的性质教案,欢迎大家分享。

大家都在看