数据分析报告

欢迎阅读数据分析报告(精选4篇),内容由多美网整理,希望对大家有所帮助。

数据分析报告 篇1

一、 提出问题

1、单位基本情况及相关业务流程介绍;

对于药店,储存大量的常用药品是必不可少的工作,随之而来的对药品的数据信息管理和储存成为了令人头疼的问题,在接到货源后,工作人员需要统计药品产地和价格的信息,为以后的货源供给地,用合理的价格出售药物,是至关重要的工作。

2、单位存在的问题。

由于货物种类、名称众多,在短时间内分析好相关数据几乎不可能,大量的数据,依靠人力或是非数据统计软件进行统计工作,事倍功半。严重影响药店的正常进货,出售药品的工作。

二、 分析问题

1、对该单位存在的问题进行分析;

由以上问题可见,利用数据挖掘进行相关数据的`统计和整理工作,简单、省时、有效。

2、解决问题的可能途径和方法。

利用SQL SEVER 导入数据,再提取统计分析结果,很快会得到想要的数据分析结果。

三、 利用数据挖掘技术解决问题

1、设计数据挖掘算法;

决策树;

数据关联;

神经元算法;

2、对挖掘结果进行深入解释和分析

由此可以看见在不不同的产地,由于地理因素和特产药品的原因,在药品相关的植物盛产区,进货比较便宜。

可以分析出,不同的消费人群对于同类的药品的购买需求,对于同样的功能的药,药存储不同价格的种类,以满足广大消费者的需求。

可以分析以前的销售结果,哪类、什么价格的更受消费者欢迎,方便以后进货。

四、 总结

通过自己的实践,对数据挖掘有了新的认识。简单来说,数据挖掘是基于“归纳”的思路,从大量的数据中(因为是基于归纳的思路,因此数据量的大小很大程度上决定了数据挖掘结果的鲁棒性)寻找规律,为决策提供证据。从这种角度上来说,数据挖掘可能并不适合进行科学研究,因为从本质上来说,数据挖掘这个技术是不能证明因果的,以一个最典型的例子来说,例如数据挖掘技术可以发现啤酒销量和尿布之间的关系,但是显然这两者之间紧密相关的关系可能在理论层面并没有多大的意义。不过,仅以此来否定数据挖掘的意义,显然就是对数据挖掘这项技术价值加大的抹杀,显然,数据挖掘这项技术从设计出现之初,就不是为了指导或支持理论研究的,它的重要意义在于,它在应用领域体现出了极大地优越性。一下是我参阅资料总结的设计数据挖掘的步骤:

① 理解数据和数据的来源

② 获取相关知识与技术

③ 整合与检查数据

④ 去除错误或不一致的数据。

⑤假设数据模型。

⑥ 实际数据挖掘工作(data mining)。

⑦ 测试和验证挖掘结果(testing and verfication)。

⑧ 解释和应用(interpretation and use)。

由上述步骤可看出,数据挖掘牵涉了大量的准备工作与规划工作,事实上许多专家都认为整套数据挖掘的过程中,有80%的时间和精力是花费在数据预处理阶段,其中包括数据的净化、数据格式转换、变量整合,以及数据表的链接。可见,在进行数据挖掘技术的分析之前,还有许多准备工作要完成。

数据分析报告 篇2

一、备案情况概述

11月份武汉市商品房销售备案套数为12945套,销售备案面积为145.66万㎡,成交均价3847元/㎡,总成交金额56.0354亿元。本月日均备案套数431套,日均备案面积4.86万㎡。

与上月相比,本月销售备案套数增长幅度很大,涨幅达到122%!比今年销售状况最好的5月也多出18.7%。综合多方面因素分析,主要有以下两个方面的原因:一方面是自今年国家对房地产行业实施了空前严格的宏观调控以来,市场供求双方都对房地产市场保持观望态度。经过几个月的市场反应,被短暂压抑的市场需求开始释放,由此导致了销售量的剧增;另一方面,也是受国家调控影响,导致往年惯常的“金九银十”局面风光不再,而是出现向十一月转移的趋势,这也促进了本月销售量的增长。此外,在十月末有数个楼盘集中开盘,其销售合同备案的延迟到十一月,这也在一定程度上也促进了本月商品房销售备案量的增长。

房地产新政实施后的几个月内,除8月份处于市场销售淡季最低谷之外,其他几个月的销售量都稳定在相对较低的水平,即使往年市场反应良好的“金九银十”的这两个月的销售量也并没有与其他月份拉开差距。

单就本月销售套数激增这一指标来看,说明市场上仍然存在旺盛的需求。但也并不能就此说明楼市今后走势,究竟是强劲反弹还是昙花一现,需要今后的市场反应来印证。

虽然商品房销售备案套数前几个月基本保持平稳,但商品房成交备案价格却一直呈现微幅上涨趋势,本月成交价格涨幅不足1%。成交价格的持续微幅上涨从另一方面也反映出本地市场的健康和旺盛的需求。

二、销售备案数据分析

1.各区域备案数据

本月销售备案套数最多的区域为江岸区。该区在十一月并没有新项目推出,销售基本都是靠以前的项目的销售的拉动,这显示出该区域众多的供应体量和市场需求。武昌区本月销售备案套数位居第二,近几个月该区域推出新盘较多,且市场反应尚可,此外还有市场反映较好的项目合同延迟到本月备案的因素在内。由于江汉区本月推出新盘相对较多,且多集中在月末,因此虽然本月销售备案套数并不多,但在下月的销售备案情况中将会有体现。

2.各建筑类型备案数据

从销售备案套数方面来说,小高层和高层建筑类型的销售情况要好于其他建筑类型。特别是高层建筑类型,连续几个月的销售数据以及月度新盘状况都表明高层建筑已经成为现在房地产市场上销售和供应的主流。随着高层建筑的不断增多,多层和小高层比重将越来越小。而随着国家全面否决别墅用地,别墅在市场上的出现也将会是越来越少。

3.不同面积段备案数据

从备案套数数据分析,本月120㎡以下的房型占总体销售量的61.7%,比上月有小量的下降,但依然占据主要地位。而随着房价的持续上涨,120㎡以上的房型总价偏高,相对而言销售存在难度,因此目前这部分房型主要存在于高端住宅和新政实施以前动工的'住宅项目中,在新建的项目中也存在部分。随着国家政策的落实到位和地方细则的出台,120㎡以下所占比重将会继续增加。

4.不同户型备案数据

本月销售备案情况显示占主要销售部分的房型是一室、两室两厅、三室两厅和四室两厅,其中三室两厅和两室两厅依然占绝大部分比重,这说明目前市场上的购房需求还属于合理正常化的阶段。而四室三厅、复式住宅和别墅等属于高端客户的户型的销售量比较一般,而这也与高端产品的销售特点是一致的。

5.不同档次备案数据

根据市场信息网统计数据,按不同的价格区间本文将交易价格在2500元/㎡以下的商品房列为普通住房,将交易价格在2500—5499元/㎡的商品房列为中高档住房,交易价格在5500元/㎡以上的(包含别墅)列为高档住房。

本月高档项目销售备案状况比上月有多好转,本月有金都汉宫等高端项目正式销售,且取得不俗的销售业绩,加上以往其他高端项目的销售拉动,备案也比较及时,因此数据有所上升。

占主要部分的还是中档项目即价格在2500-5499元/㎡区间内的项目,2500元/㎡以下的项目一般都在江夏、吴家山等远城区。而实际上,随着房价的上涨,市区内3500元/㎡以下的项目也是比较少了,主要集中在东西湖、后湖等板块,可以说3500-5499元/㎡这个价格区间的销量显示了大多数购房者的真实承受能力,这个价格范围内的项目一般处于中心城区或者近城区,生活便利,离原来的居住地点也不远,相对而言总价也还在可接受的范围内。

6.区域成交价格分析

本月成交备案价格最高的区域是武昌区,由于区域内集中了众多高档项目,而且具有良好的景观资源,因此武昌区的价格近来上涨较快,超过了江汉区。而汉阳区在几个代表性楼盘的拉动和新区建设的利好消息之下,区域成交价格也是持续上涨。

三、增量备案数据分析

1.各建筑类型增量分析

本月新增量中,高层建筑面积新增95.94万㎡,而小高层建筑由于增量较少,反而抵不上销量,两者权衡因此出现存量下跌的状况,也即小高层建筑本月新增量为零,且小高层存量消化了15.84万㎡。根据多方面数据综合分析,高层建筑本月销量和增量都有如此大的量可能有集中备案和报批因素。别墅出现增量则是新政以前的项目的后续工程。

2.不同面积段新增量分析

从上图可以看出本月各个面积段的增量中,140㎡以上的占50%以上,而综合市场因素分析,本月新增项目中并没有如此大的体量,因此本月新增数据依然存在集中备案因素,导致各面积段新增量数据较高。而91-120㎡面积段销售量大于新增量,使得该面积段的存量下跌。

从本月各面积段的增量数据来看,前一段时间趋于稳定的供应结构将会有一定调整,主要体现在大面积房型的供应量将会有一定上升。由于国家规定“90㎡以下户型占总量70%”的硬性指标,因此今后的结构调整仍将是个不得不重视的问题。

3.各区域新增量分析

本月各区域的新增量呈现出参差不齐的现象,武昌区和东西湖区由于几个大盘的推出导致新增量大,而汉阳、洪山等区域也有新项目推出,但新增量依然小于销售量,这反映出目前市场上仍然存在较大需求。

四、总结

本月备案情况无论是销售套数还是销售面积都出现了“井喷”现象,备案套数更是跃居全年最高水平,以往房地产业内的“金九银十”的黄金销售期也似乎转移到十一月。而事实上,从本月新增备案项目、开盘项目、销售状况等方面来看,也确实印证了这一点。但是由于今年的特殊情况,市场对于地产新政的效果需要一段时间才能反映出来,在此期间内因此各项指标都出现了一定量的下跌。而本月备案套数、备案面积的剧增可以理解为前一段时间被压抑的市场供应和需求得到了集中释放的结果。

本月各区域市场体现出一定的不平衡性,主要体现为区域市场上的供求关系不同,从各区域新增量情况来看,有的区域持续大体量供应,而有的区域则增量不抵销量,使得本月消化了部分存量。

同时,根据本月不同面积段的新增量数据显示,140㎡以上的大面积房型在市场上比重增加,一方面带来销售压力的同时,另一方面也使得市场供应结构发生变化,对市场的良性发展产生一定影响。

由于全市高端项目多集中在武昌的临江、临湖区域,因此近来武昌区的成交价格被拉升,导致本月武昌区域成交备案价格高于其他区域。随着金都汉宫的正式销售,全市的高端住宅基本都已经开始销售且在近期内也不会有新的高端项目推出,高端市场竞争越发激烈,而这些高端项目今后走势如何将值得关注。

数据分析报告 篇3

一、确定分析目标

分析目标主要包括以下三个方面:

分析目的,

经营数据分析报告,

分析范围。

分析时间。

如下图所示,分析目标除了主要包括三个方面外,还有备注一栏,这里备注的是计算周期问题。强调一点,我们做运营数据分析的时候通常都会拿更新前和更新后的数据进行比较,因此我们的设定的分析周期一般都会跟着游戏实际的更新情况走。

二、分析综述

分析综述主要包括两方面的内容

1、上周/本周充值数据对比

充值总额

充值人数

服务器数

服务器平均充值

服务器平均充值人数

针对上述内容进行差额对比以及增减率对比,如游戏有特殊要求,可以适当增加其它数据内容。

2、上周/本周更新内容对比

主要陈列两周内分别更新的活动内容或一些重大调整。

三、一周运营数据分析

1、本周收入概况

日均充值金额,环比上周日均充值金额

用户ARPU值,环比上周ARPU值

简述与上周或之前的充值情况的比较,如上升还是下降、影响充值的较大的因素。

2、新用户概况

新用户就是新进游戏的玩家,这里主要介绍这些新玩家的动态数据,一般以两个月为总时长进行陈列比较,具体周期数据仍以周为单位。

新用户数据主要包括:安装下载数、创建角色数、安装→角色转化率、付费人数、创建角色→付费转化率、ARPU值、次日留存、三日留存、七日留存等,可根据游戏实际情况进行添加。

3、活跃用户概况

活跃用户概况主要包括三部分内容:

日均在线人数,环比上周实时在线人数,提升/下降百分比

日均付费用户登陆人数,环比上周付费登陆数,提升/下降百分比

日均活跃玩家数,环比日均活跃玩家数,提升/下降百分比

4、道具消费概况

道具方面的消费概况主要包括:

产出活动类别

道具分类

单类道具消费元宝,消费占比,环比上周

日均消费元宝,总消费元宝,环比上周下降/上升

简述活动效果较好/较差的道具分类

5、当前元宝库存

当前元宝库存是指玩家充了元宝还没花出去的存量,以及游戏中额外获得的元宝存量。例如,我充了1000块,拿了1w元宝,花了8K,我造成的存量是2K,当平台各服的元宝存量不断上涨,就代表消费点不够了,要不补新消费系统,要不上消费类的运营活动。

6、重点商业活动付费玩家参与情况

活动参与情况主要考虑以下几点:

付费群体类别,活跃付费玩家数

付费玩家的参与比例

付费玩家在活动中消费的元宝数

付费玩家在活动中消费的元宝占周消费元宝总数的比例

付费玩家的人均消费元宝数

根据活动的这些付费玩家的相关数据,判断该活动产生的效益以及玩家的接受程度。

如果数据不佳,则代表该活动不行,需深究其存在的问题,看看问题是出现在活动难度、活动的奖励不吸引、还是活动本身的可玩性太差。根据分析的原因在下次更新活动时判断是需要进行调整玩法设定还是替换成新活动,另外,同一时期可能会推出多个活动,在进行单个活动数据分析时,也要横向比较各个活动的效果,对于下次运营其它产品,有个经验借鉴。

注:付费玩家数:活动期间登陆过游戏的玩家数;消费占比 = 活动道具总消费元宝/当周总消费元宝

四、游戏运营数据总分析

在简单分析完一周的运营情况之后,接下来将针对一定运营周期的数据进行详细分析。

1、近期充值概况

近期充值情况基本上是以一周时长为单位进行分析,主要分析内容包括:每周收入、收入增长率、当周日均收入、当周总付费人数、ARPU值、服务器数量、服均日收入等,可根据游戏实际情况适当增减分析类别。

2、新注册用户分析

因为是针对新注册用户的分析,因此这一块的分析与前面一周运营数据稍有重合。

这一块的分析重点在于各个渠道的数据比较,包括新注册用户比较、活跃用户比较、累积付费金额比较三部分内容。

3、活跃用户分析

前面的活跃用户分析主要是围绕一周每日的活跃用户分析,而这里的活跃用户分析则可以是两周、三周或者更长时间的分析, 主要看实际游戏的需要。

活跃用户概况描述主要包括三部分内容:

日均在线人数,环比上周实时在线人数,提升/下降百分比

日均付费用户登陆人数,环比上周付费登陆数,提升/下降百分比

日均活跃玩家数,环比日均活跃玩家数,提升/下降百分比

注:这里描述的内容根据分析的目的走,不一定非得是本周与上周的比较。

注:老付费登陆数 = 剔除统计日新增付费玩家数

4、道具消耗分析

道具消耗分析主要包括三部分内容:

元宝消耗结构,如装备类、抽奖类、促销类等

每一类道具的具体元宝消耗情况分析

每一类道具在分析周期内的消费占比

另外,具体的文字描述分析这里不一一举例,参照着数据分析表的.实际情况简单做个文字描述即可。对于一些销量很好的道具及销量不佳的道具可以重点品评,分析造成差异的原因,以便下次更新可以调整改进。

1)每周日均元宝消耗量

2)元宝消耗占比

5、付费玩家元宝情况

付费玩家的元宝情况主要分析:

获得元宝量,包括充值获得、游戏中获得

消耗元宝量,包括充值元宝消耗和赠送元宝消耗

元宝存量,包括充值存量和赠送存量

备注:

充值玩家总元宝来源=充值获得元宝+游戏内相关渠道获得赠送元宝

充值玩家元宝存量=元宝存量+赠送元宝存量

消耗元宝量=元宝消耗+赠送元宝消耗

6、重点游戏系统监控

由于每个游戏的系统众多,这里简单以获得紫卡伙伴和副本关卡为例做个简单介绍。

1)获得紫卡数分析

分析主要针对不同付费层级的玩家进行分析。在主流卡牌游戏中,紫卡通常是比较高级的卡牌,紫卡的拥有数量对于游戏的系统分析具有比较重要的意义。根据分析可以观察紫卡的拥有数量是否合理,例如大R与小R是否存在明显的拥有差异,紫卡是易得还是难得。分析过后才能对产出卡牌的概率以及获得渠道作相关调整。

2)副本系统监测

类似推图的副本,或者一些任务,都是需要我们关注的游戏重点。根据每个关卡玩家的通关参与数,可以简单的看出每个关卡玩家参与的情况,从而判断是否有关卡设定不合理或者数据异常。

其实除了系统监测,对于玩家的升级情况、商城的付费情况等都可以做详细的分析,主要看你的游戏处于哪个阶段,分析的重点在哪。

7、重点商业活动付费玩家参与情况

这里分析主要包括往期活动玩家的参与情况,或对于周期较长的活动进行阶段性的分析。这个分析与前面的活动分析类似,这里不再详细说明。

总结

做完以上分析之后,有需要的应该对整份分析报告进行总结描述,譬如列举一些内容修改的建议之类的。

因为不同类别游戏的差异性较大,所以这个分析也仅仅是起到抛砖引玉的作用。我们在实际工作中抒写分析报告时,通常会根据游戏的指标、阶段的侧重点、分析的模块而决定分析的对象。因此,最终还是需要具体情况进行具体分析。

数据分析报告 篇4

分析摘要:xx厂是我国大型xx制造企业,按国际标准和国家最新技术标准,生产xxx类型xx、xx、xx等几个品种。经营管理情况复杂,工序环节多,产品结构变化大。我们利用填报的xxxx年xx省投入产出调查表,合计xx指标数值,以厦已有的投入产出辅助成果,第一次把企业内部与企业外部的经济联络以及企业内部的经济关系全部反映出来,使我们详细地系统地掌握了当年全部购入物资的来源与分配消耗构成;机床生产与社会各经济部门之间的经济联系和机床的销售去向确切地反映了固定资产和流动资金的增减变化况,以厦新创造价值的构成情况,并对企业经营管理活动进行了综合分析。

一、购入物资分析

xxxx年我厂购入的物资总金额中,省内产品占xx%,省外产品占xx%,其他占xx%。在全部购入物资总额中,按工业部门划分,属于黑色金属冶炼hax。的产品占xx%,电力工业占xx%,煤炭和石油产品占xx%,建筑材料厦建筑业产品占xx%。以上六个部门的工业产品占我厂购入物资的xx%,是我厂物资消耗的重点。特别是xx金属的购入量占总金额的一半以上,说明我厂要搞好物资管理,应该在xx金属的购入与管理方面狠下工夫。弄清与哪些物资部门有联系,确定舍理的供货地,以减少运输费用。把这个重点抓住了,我厂物资管理的经济效益将会有显著提高。

二、物资消耗分析

在奎年购入的'物资总额中,物资消耗中xx%,用于增加固定资产的占xx%,其他占xx%。从物资消耗的比重看,产品消耗占主要部分。再从工业生产物资实物量消耗分析看,在xx生产过程中,直接消耗的物资主要有金属材料、燃料、动力和工具。其中钢材每天平均需要量为xx吨,l燃料油xx吨,煤xx吨,电xx万度。接物资消耗值量分析,在万元产值中,物资消耗总量为xx元,其中xx金属加工业的产品为xx元,有色金属加工业的产品为xx元。从单位产品耗用量看,每台xx产品平均投入的xx原料xx公斤,xx原料xx公斤。

三、产出效益分析

x年我厂生产xx产品xx台套,产值xx万元。出售半成品厦工业性作业产值为xx万元,合计现价工业总产值为xx万元。创造工业净产值xx万元,占工业总产值的比重为xx%,比上年提高了xx%。主要是由于工业总产值比上年提高了xx%,物耗只比上年提高了xx%,同期净产值比上年提高了xx%;万元产值的构成中,材料消耗为上年的xx%,动力、燃料消耗为上年的xx%,这两项指标说明由于产量的增长使万元产值中原材料比重降低,经济效益也比上年提高。

四、产出流向分析

xx年xxx产品产量xx台,上年生产而由用户退货xx台,本年收入量合计为xx台。本年销售量xx台,按实物量计算商品销售率为xx%。在销售产品中,售给本省的占xx%,售给省外的占xx%,出口的占xx%。说明产品的覆盖面较大。

通过上述分析,我们对全厂的耗用物资、货源构成、物耗去向,核算了大量的系数,这对确定企业的中长期计划有重要的作用。如xxxx年确定机床产值xx万元,根据测算系数,需要钢材xx吨,实际耗用量为xx吨,这是由于钢材利用率提高了xx%,节约钢材xx吨,系数测算与实际耗用的误差率为xx%。预计经过几年的实际测算和系数的调查,将对计划的编制起到更大的作用。

大家都在看